在上一篇文章中,我们讨论了如何构建一个文档助手Agent。今天,我想分享另一个实际项目:如何构建一个研发助手Agent。这个项目源于我们团队的真实需求 - 提升研发效率,降低开发成本。
从开发痛点说起
记得和研发团队讨论时的场景:
小张:每天要写很多重复的代码,很浪费时间
小李:是啊,而且经常要查API文档,切换上下文很烦
我:主要是哪些开发场景?
小张:CRUD、单元测试、接口对接这些
我:这些场景很适合用AI Agent来协助
经过需求分析,我们确定了几个核心功能:
- 代码生成
- 测试辅助
- API集成
- 性能优化
技术方案设计
首先是整体架构:
from typing import List, Dict, Any, Optional
from enum import Enum
from pydantic import BaseModel
import asyncioclass DevelopTask(Enum):CODE = "code"TEST = "test"API = "api"OPTIMIZE = "optimize"class DevelopContext(BaseModel):task_type: DevelopTasklanguage: strframework: strrequirements: Dict[str, Any]code_context: Optional[str]class DevelopAssistant:def __init__(self,config: Dict[str, Any]):# 1. 初始化代码模型self.code_model = CodeLLM(model="codellama-34b",temperature=0.2,context_length=8000)# 2. 初始化工具集self.tools = {"generator": CodeGenerator(),"tester": TestHelper(),"api": APIIntegrator(),"optimizer": CodeOptimizer()}# 3. 初始化知识库self.knowledge_base = VectorStore(embeddings=CodeEmbeddings(),collection="dev_knowledge")async def process_task(self,context: DevelopContext) -> Dict[str, Any]:# 1. 理解需求requirements = await self._understand_requirements(context)# 2. 准备上下文dev_context = await self._prepare_context(context,requirements)# 3. 生成方案plan = await self._generate_plan(requirements,dev_context)# 4. 执行任务result = await self._execute_task(plan,context)return resultasync def _understand_requirements(self,context: DevelopContext) -> Dict[str, Any]:# 1. 分析任务类型task_analysis = await self._analyze_task(context.task_type,context.requirements)# 2. 提取关键需求key_requirements = await self._extract_requirements(context.requirements)# 3. 确定技术栈tech_stack = await self._determine_tech_stack(context,key_requirements)return {"task": task_analysis,"requirements": key_requirements,"tech_stack": tech_stack}
代码生成功能
首先实现代码生成功能:
class CodeGenerator:def __init__(self,model: CodeLLM):self.model = modelasync def generate_code(self,context: DevelopContext) -> Dict[str, Any]:# 1. 分析需求specs = await self._analyze_specs(context)# 2. 生成代码code = await self._generate_implementation(specs)# 3. 优化代码optimized = await self._optimize_code(code,context)return optimizedasync def _analyze_specs(self,context: DevelopContext) -> Dict[str, Any]:# 1. 提取功能点features = await self._extract_features(context.requirements)# 2. 识别依赖dependencies = await self._identify_dependencies(features,context)# 3. 设计接口interfaces = await self._design_interfaces(features,context)return {"features": features,"dependencies": dependencies,"interfaces": interfaces}async def _generate_implementation(self,specs: Dict[str, Any]) -> Dict[str, Any]:implementations = {}# 1. 生成模型models = await self._generate_models(specs["features"])implementations["models"] = models# 2. 生成服务services = await self._generate_services(specs["features"],models)implementations["services"] = services# 3. 生成控制器controllers = await self._generate_controllers(specs["interfaces"],services)implementations["controllers"] = controllersreturn implementations
测试辅助功能
接下来是测试辅助功能:
class TestHelper:def __init__(self,model: CodeLLM):self.model = modelasync def assist_testing(self,context: DevelopContext,code: Dict[str, Any]) -> Dict[str, Any]:# 1. 分析测试点test_points = await self._analyze_test_points(code,context)# 2. 生成测试用例test_cases = await self._generate_test_cases(test_points)# 3. 执行测试results = await self._run_tests(test_cases,code)return resultsasync def _analyze_test_points(self,code: Dict[str, Any],context: DevelopContext) -> List[Dict[str, Any]]:points = []# 1. 功能测试点functional = await self._identify_functional_points(code)points.extend(functional)# 2. 边界测试点boundary = await self._identify_boundary_points(code)points.extend(boundary)# 3. 异常测试点exception = await self._identify_exception_points(code)points.extend(exception)return pointsasync def _generate_test_cases(self,test_points: List[Dict[str, Any]]) -> List[Dict[str, Any]]:test_cases = []for point in test_points:# 1. 准备测试数据test_data = await self._prepare_test_data(point)# 2. 生成测试代码test_code = await self._generate_test_code(point,test_data)# 3. 添加断言assertions = await self._add_assertions(test_code,point)test_cases.append({"point": point,"data": test_data,"code": test_code,"assertions": assertions})return test_cases
API集成功能
再来实现API集成功能:
class APIIntegrator:def __init__(self,model: CodeLLM):self.model = modelasync def integrate_api(self,context: DevelopContext,api_spec: Dict[str, Any]) -> Dict[str, Any]:# 1. 分析APIapi_info = await self._analyze_api(api_spec)# 2. 生成客户端client = await self._generate_client(api_info,context)# 3. 实现集成integration = await self._implement_integration(client,context)return integrationasync def _analyze_api(self,api_spec: Dict[str, Any]) -> Dict[str, Any]:# 1. 解析接口定义endpoints = await self._parse_endpoints(api_spec)# 2. 分析数据模型models = await self._analyze_models(api_spec)# 3. 识别认证方式auth = await self._identify_auth(api_spec)return {"endpoints": endpoints,"models": models,"auth": auth}async def _implement_integration(self,client: Dict[str, Any],context: DevelopContext) -> Dict[str, Any]:# 1. 生成调用代码calls = await self._generate_api_calls(client["endpoints"])# 2. 处理响应handlers = await self._generate_response_handlers(client["models"])# 3. 错误处理error_handlers = await self._generate_error_handlers(client["endpoints"])return {"calls": calls,"handlers": handlers,"error_handlers": error_handlers}
性能优化功能
最后是性能优化功能:
class CodeOptimizer:def __init__(self,model: CodeLLM):self.model = modelasync def optimize_code(self,context: DevelopContext,code: Dict[str, Any]) -> Dict[str, Any]:# 1. 性能分析profile = await self._analyze_performance(code)# 2. 识别瓶颈bottlenecks = await self._identify_bottlenecks(profile)# 3. 优化实现optimized = await self._apply_optimizations(code,bottlenecks)return optimizedasync def _analyze_performance(self,code: Dict[str, Any]) -> Dict[str, Any]:# 1. 静态分析static = await self._static_analysis(code)# 2. 复杂度分析complexity = await self._complexity_analysis(code)# 3. 资源使用分析resources = await self._resource_analysis(code)return {"static": static,"complexity": complexity,"resources": resources}async def _apply_optimizations(self,code: Dict[str, Any],bottlenecks: List[Dict[str, Any]]) -> Dict[str, Any]:optimized = code.copy()for bottleneck in bottlenecks:# 1. 生成优化方案solution = await self._generate_optimization(bottleneck)# 2. 应用优化optimized = await self._apply_optimization(optimized,solution)# 3. 验证效果verified = await self._verify_optimization(optimized,bottleneck)if not verified:optimized = await self._rollback_optimization(optimized,solution)return optimized
实际效果
经过两个月的使用,这个研发助手Agent带来了显著的效率提升:
开发提速
- 代码生成效率提升70%
- 测试覆盖率提高40%
- API对接时间减少50%
质量改善
- 代码更规范
- 测试更全面
- 性能更优化
体验优化
- 开发更流畅
- 调试更便捷
- 维护更简单
实践心得
在开发这个研发助手Agent的过程中,我总结了几点经验:
场景聚焦
- 从痛点出发
- 循序渐进
- 持续优化
工具协同
- 工具要集成
- 流程要打通
- 体验要一致
持续进化
- 收集反馈
- 迭代改进
- 扩展能力
写在最后
一个好的研发助手Agent不仅要能写代码,更要理解开发者的意图,提供全方位的开发支持。它就像一个经验丰富的技术导师,在合适的时候给出恰当的建议。
在下一篇文章中,我会讲解如何开发一个运维助手Agent。如果你对研发助手Agent的开发有什么想法,欢迎在评论区交流。