5. 马科维茨资产组合模型+政策意图AI金融智能体(Qwen-Max)增强方案(理论+Python实战)

news/2025/1/23 23:10:00/

目录

    • 0. 承前
    • 1. AI金融智能体
    • 2. 数据要素&计算流程
      • 2.1 参数集设置
      • 2.2 数据获取&预处理
      • 2.3 收益率计算
      • 2.4 因子构建与预期收益率计算
      • 2.5 协方差矩阵计算
      • 2.6 投资组合优化
      • 2.7 持仓筛选
      • 2.8 AI金融智能体调仓函数
    • 3. 汇总代码
    • 4. 反思
      • 4.1 不足之处
      • 4.2 提升思路
    • 5. 启后

0. 承前

本篇博文是对上一篇文章,链接:
4. 马科维茨资产组合模型+Fama-French五因子优化方案(理论+Python实战)
资产权重进行AI干预
本文首先使用Fama-French五因子计算出资产组合模型权重,再把权重结合政策信息输入AI模型,目的是

  • 金融工程中,实现AI功能在金融模型的落地的尝试;
  • AI模型对政策信息描述内容,情绪分析等进行分析,实现政策信息对金融模型的主动影响

本文主要要素:

  • 马科维茨资产组合模型;
  • Fama-French五因子模型预期收益率;
  • AI金融智能体(通义千问:qwen-max),提示词工程;
  • 政策信息通过AI转化影响预期收益率。

如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:
0. 金融资产组合模型进化全图鉴

1. AI金融智能体

1.1 What is AI金融智能体

AI金融智能体是指利用人工智能技术,特别是机器学习、深度学习和自然语言处理等先进技术,来模拟人类分析师的行为,以执行复杂的金融分析任务的软件。本文主要是通过提示词工程,结合政策信息,给予AI一定的范围权限去影响资产组合权重,属于金融工程构建的尝试性实验。

1.2 Why is AI金融智能体

  • 自动接入全网,实时搜索并分析海量数据:AI金融智能体能够无缝连接互联网,迅速处理和解析大量的金融市场信息,为用户提供即时的洞察和支持。

  • 拥有远超人类的计算能力,揭示潜在的市场盲点:凭借其卓越的计算力,AI智能体可以深入挖掘数据,识别出那些基于常识可能被忽视的市场机会或风险。

  • 顺应技术潮流,推动更多AI工具在金融领域的实际应用:随着技术的进步,AI在金融行业的落地已成为必然趋势。金融机构需积极探索和实施更多的AI解决方案,以保持竞争力和服务创新。

1.3 How to AI金融智能体

  • 参数集设置

    1. ts.set_token:设置Tushare的API访问令牌
    2. industry:选择目标行业,如"银行"
    3. end_date:回测结束日期,格式为’YYYYMMDD’
    4. years:回测年限,默认5年
    5. risk_free_rate:无风险利率,默认0.03
    6. top_holdings:投资组合持仓数量,默认10只股票
    7. index_code:市场指数代码,默认’000300.SH’
    8. api_key:通义千问API
    9. character:AI人设提示词工程
    10. policy_info:政策信息(5条)
  • 数据准备

    1. 股票行业数据:通过tushare获取指定行业的股票列表
    2. 历史价格数据:获取指定时间段内的股票日线数据
    3. 市场指数数据:获取指定时间段内的市场指数数据
    4. 因子数据:获取市值(Size)和账面市值比(B/M)数据
    5. 财务数据:获取ROE和资产增长率数据
    6. 无风险利率:设定无风险利率参数
  • 计算流程

    1. 数据获取:获取股票、市场指数和因子数据
    2. 收益率计算:计算月度对数收益率
    3. 因子构建:构建SMB、HML、RMW和CMA因子
    4. 因子载荷计算:计算每只股票对五个因子的敏感度
    5. FF5预期收益:使用五因子模型计算预期收益率
    6. 组合优化:最大化夏普比率得到最优权重
    7. 持仓筛选:选取权重最大的N只股票并归一化
    8. AI函数:结合权重数据、政策信息、提示词工程,对权重实现智能调整

2. 数据要素&计算流程

2.1 参数集设置

设置模型所需的基本参数,包括数据获取、回测区间和优化约束等。

python"># 参数集
ts.set_token('token')
pro = ts.pro_api()
industry = '银行'
end_date = '20240101'
years = 5   # 数据时长
risk_free_rate = 0.03  # 无风险利率参数
top_holdings = 10      # 持仓数量参数
index_code = '000300.SH'  # 市场指数代码参数
api_key='sk-api_key'	# 通义千问API# AI人设提示词工程
character = f'''
你是一名专业的金融数据与政策分析师,擅长解读金融市场动态和政策导向,并据此调整资产组合的权重分布,以优化投资策略。你的主要任务是对给定的资产组合进行权重调整,确保:
1. 权重之和精确为1;
2. 每个资产调整后的权重只能在原有基础上增减最多10%;
3. 每个资产调整完毕后,如果权重之和不等于1,则归一化使权重之和精确为1;
4. 数据对应的日期是{end_date},在思考过程中,切勿根据该日期之后的信息进行思考。
5. 输出的数据格式需与输入保持一致,仅提供数据而不做额外解释;当你接收到具体的资产组合及其权重时,请根据最新的金融数据和政策信息对其进行合理调整。
'''# 通过工作流获取的政策信息
policy_info = '''
| 日期 | 政策简述 |
|------|----------|
| 2023-12-29 | 央行发布《关于优化商业银行存款利率监管有关事项的通知》,取消定期存款利率浮动上限,允许银行自主协调存贷款利率 |
| 2023-11-17 | 央行、银保监会联合发布《关于做好当前商业银行房地产贷款投放管理的通知》,优化房地产信贷政策,支持刚性和改善性住房需求 |
| 2023-09-25 | 银保监会发布《关于进一步加强银行业金融机构流动性风险管理的通知》,要求银行加强流动性风险管理,完善风险监测预警机制 |
| 2023-08-31 | 央行、银保监会宣布下调全国首套住房贷款利率下限,各地可自主决定下调幅度,二套房贷款利率政策与首套相同 |
| 2023-07-21 | 十四届全国人大常委会第四次会议表决通过《中华人民共和国金融稳定法》,建立健全金融风险防范化解制度体系 |
'''

2.2 数据获取&预处理

获取股票、市场指数、因子数据和财务数据,并进行必要的数据清洗和格式转换。

python">def get_industry_stocks(industry):"""获取指定行业的股票列表"""df = pro.stock_basic(fields=["ts_code", "name", "industry"])industry_stocks = df[df["industry"]==industry].copy()industry_stocks.sort_values(by='ts_code', inplace=True)industry_stocks.reset_index(drop=True, inplace=True)return industry_stocks['ts_code'].tolist()def get_data(code_list, end_date, years):"""获取指定行业名称的历史收盘价数据"""ts_code_list = code_listend_date_dt = datetime.strptime(end_date, '%Y%m%d')start_date_dt = end_date_dt - timedelta(days=years*365)start_date = start_date_dt.strftime('%Y%m%d')all_data = []for stock in ts_code_list:df = pro.daily(ts_code=stock, start_date=start_date, end_date=end_date)all_data.append(df)combined_df = pd.concat(all_data).sort_values(by=['ts_code', 'trade_date'])combined_df.reset_index(drop=True, inplace=True)combined_df.rename(columns={'trade_date': 'date'}, inplace=True)return combined_dfdef get_market_data(index_code='000300.SH', start_date=None, end_date=None):"""获取市场指数数据用于计算贝塔"""df_market = pro.index_daily(ts_code=index_code, start_date=start_date, end_date=end_date,fields=['trade_date', 'close'])df_market['date'] = pd.to_datetime(df_market['trade_date'])df_market.set_index('date', inplace=True)df_market = df_market.sort_index()monthly_last_close = df_market['close'].resample('M').last()monthly_log_returns = np.log(monthly_last_close).diff().dropna()return monthly_log_returnsdef get_factor_data(stock_codes, start_date=None, end_date=None):"""获取指定股票的因子数据(市值和PB)"""all_factor_data = []for stock in stock_codes:try:df = pro.daily_basic(ts_code=stock,start_date=start_date,end_date=end_date,fields=['ts_code', 'trade_date', 'total_mv', 'pb'])all_factor_data.append(df)except Exception as e:print(f"获取股票 {stock} 的因子数据失败: {str(e)}")continuefactor_data = pd.concat(all_factor_data, ignore_index=True)factor_data['trade_date'] = pd.to_datetime(factor_data['trade_date'])return factor_datadef get_fina_data(stock_codes, start_date=None, end_date=None):"""获取指定股票的财务指标数据(ROE和资产增长率)"""all_fina_data = []for stock in stock_codes:try:df = pro.fina_indicator(ts_code=stock,start_date=start_date,end_date=end_date,fields=['ts_code', 'end_date', 'roe_dt', 'assets_yoy', 'update_flag'])all_fina_data.append(df)except Exception as e:print(f"获取股票 {stock} 的财务数据失败: {str(e)}")continue# 合并数据fina_data = pd.concat(all_fina_data, ignore_index=True)# 处理update_flag,保留最新数据fina_data = (fina_data.groupby(['ts_code', 'end_date']).agg({'roe_dt': 'first', 'assets_yoy': 'first','update_flag': 'max'}).reset_index())# 将end_date转换为datetimefina_data['end_date'] = pd.to_datetime(fina_data['end_date'])# 创建季度到月度的映射monthly_data = []for _, row in fina_data.iterrows():quarter_end = row['end_date']if quarter_end.month == 3:  # Q1months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]elif quarter_end.month == 6:  # Q2months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]elif quarter_end.month == 9:  # Q3months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]else:  # Q4months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]for month in months:monthly_data.append({'ts_code': row['ts_code'],'trade_date': month,'roe_dt': row['roe_dt'],'assets_yoy': row['assets_yoy']})monthly_df = pd.DataFrame(monthly_data)return monthly_df

2.3 收益率计算

计算月度对数收益率,为后续的因子构建和优化计算做准备。

python">def calculate_monthly_log_returns(df):"""计算每月的对数收益率"""df['date'] = pd.to_datetime(df['date'])monthly_last_close = df.groupby(['ts_code', pd.Grouper(key='date', freq='M')])['close'].last().unstack(level=-1)monthly_log_returns = np.log(monthly_last_close).diff().dropna()return monthly_log_returns.T

2.4 因子构建与预期收益率计算

构建SMB、HML、RMW和CMA因子,并使用五因子模型计算预期收益率。

python">def calculate_expected_returns(monthly_log_returns):"""使用Fama-French五因子模型计算各股票的预期收益率"""start_date = monthly_log_returns.index.min().strftime('%Y%m%d')end_date = monthly_log_returns.index.max().strftime('%Y%m%d')# 获取财务数据时,将start_date往前推一个季度,以确保有完整的季度数据fina_start_date = (datetime.strptime(start_date, '%Y%m%d') - timedelta(days=90)).strftime('%Y%m%d')# 获取市场收益率market_returns = get_market_data(index_code, start_date, end_date)# 获取股票的市值和PB数据stock_data = get_factor_data(monthly_log_returns.columns.tolist(),start_date,end_date)# 获取财务指标数据,使用提前的start_datefina_data = get_fina_data(monthly_log_returns.columns.tolist(),fina_start_date,end_date)# 确保所有数据的日期对齐aligned_dates = monthly_log_returns.index.intersection(market_returns.index)market_returns = market_returns[aligned_dates]stock_returns = monthly_log_returns.loc[aligned_dates].copy()  # 使用copy()避免SettingWithCopyWarningdef calculate_size_factor(date):date_data = stock_data[stock_data['trade_date'].dt.to_period('M') == date.to_period('M')]median_mv = date_data['total_mv'].median()small_returns = stock_returns.loc[date, date_data[date_data['total_mv'] <= median_mv]['ts_code']]big_returns = stock_returns.loc[date, date_data[date_data['total_mv'] > median_mv]['ts_code']]return small_returns.mean() - big_returns.mean()def calculate_value_factor(date):date_data = stock_data[stock_data['trade_date'].dt.to_period('M') == date.to_period('M')]# 创建date_data的副本并计算bm_ratiodate_data = date_data.copy()date_data.loc[:, 'bm_ratio'] = 1 / date_data['pb']median_bm = date_data['bm_ratio'].median()high_returns = stock_returns.loc[date, date_data[date_data['bm_ratio'] > median_bm]['ts_code']]low_returns = stock_returns.loc[date, date_data[date_data['bm_ratio'] <= median_bm]['ts_code']]return high_returns.mean() - low_returns.mean()def calculate_profitability_factor(date):date_data = fina_data[fina_data['trade_date'].dt.to_period('M') == date.to_period('M')]median_roe = date_data['roe_dt'].median()robust_returns = stock_returns.loc[date, date_data[date_data['roe_dt'] > median_roe]['ts_code']]weak_returns = stock_returns.loc[date, date_data[date_data['roe_dt'] <= median_roe]['ts_code']]return robust_returns.mean() - weak_returns.mean()def calculate_investment_factor(date):date_data = fina_data[fina_data['trade_date'].dt.to_period('M') == date.to_period('M')]median_growth = date_data['assets_yoy'].median()conservative_returns = stock_returns.loc[date, date_data[date_data['assets_yoy'] <= median_growth]['ts_code']]aggressive_returns = stock_returns.loc[date, date_data[date_data['assets_yoy'] > median_growth]['ts_code']]return conservative_returns.mean() - aggressive_returns.mean()# 计算每个月的因子收益smb_factor = pd.Series([calculate_size_factor(date) for date in aligned_dates], index=aligned_dates)hml_factor = pd.Series([calculate_value_factor(date) for date in aligned_dates], index=aligned_dates)rmw_factor = pd.Series([calculate_profitability_factor(date) for date in aligned_dates], index=aligned_dates)cma_factor = pd.Series([calculate_investment_factor(date) for date in aligned_dates], index=aligned_dates)# 使用OLS回归计算每个股票的因子载荷factor_loadings = {}for stock in stock_returns.columns:X = sm.add_constant(pd.concat([market_returns - risk_free_rate,smb_factor,hml_factor,rmw_factor,cma_factor], axis=1))y = stock_returns[stock] - risk_free_ratemodel = sm.OLS(y, X).fit()factor_loadings[stock] = model.params[1:]# 计算因子风险溢价market_premium = market_returns.mean() - risk_free_ratesmb_premium = smb_factor.mean()hml_premium = hml_factor.mean()rmw_premium = rmw_factor.mean()cma_premium = cma_factor.mean()# 使用FF5模型计算预期收益率expected_returns = pd.Series({stock: (risk_free_rate + loadings.iloc[0] * market_premium +loadings.iloc[1] * smb_premium + loadings.iloc[2] * hml_premium +loadings.iloc[3] * rmw_premium +loadings.iloc[4] * cma_premium)for stock, loadings in factor_loadings.items()})return expected_returns

2.5 协方差矩阵计算

计算收益率的协方差矩阵,用于评估资产间的相关性和波动性。

python">def calculate_covariance_matrix(monthly_log_returns):"""计算收益率协方差矩阵"""return monthly_log_returns.cov()

2.6 投资组合优化

通过最大化夏普比率来寻找最优权重配置。

python">def max_sharpe_ratio(mean_returns, cov_matrix, risk_free_rate):"""计算最大夏普比率的投资组合权重"""num_assets = len(mean_returns)args = (mean_returns, cov_matrix, risk_free_rate)constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})bounds = tuple((0, 1) for asset in range(num_assets))result = minimize(negative_sharpe_ratio, num_assets*[1./num_assets], args=args,method='SLSQP', bounds=bounds, constraints=constraints)return result.x

2.7 持仓筛选

选取权重最大的N只股票并重新归一化权重。

python">def calculate_top_holdings_weights(optimal_weights, monthly_log_returns_columns, top_n):"""计算前N大持仓的权重占比"""result_dict = {asset: weight for asset, weight in zip(monthly_log_returns_columns, optimal_weights)}top_n_holdings = sorted(result_dict.items(), key=lambda item: item[1], reverse=True)[:top_n]top_n_sum = sum(value for _, value in top_n_holdings)updated_result = {key: value / top_n_sum for key, value in top_n_holdings}return updated_result

2.8 AI金融智能体调仓函数

python">def get_ai_weights(character, policy_info, updated_result, api_key):# 定义发送对话内容messages = [{'role': 'system', 'content': character},{'role': 'user', 'content': policy_info},{'role': 'user', 'content': json.dumps(updated_result, ensure_ascii=False)}]response = dashscope.Generation.call(api_key=api_key,model="qwen-max",messages=messages,result_format='message',enable_search=True,top_p=0.01)# 提取content内容content = response['output']['choices'][0]['message']['content']# 将JSON字符串转换为Python字典portfolio_weights = json.loads(content)# 对AI输出结果进行归一化weights_sum = sum(portfolio_weights.values())portfolio_weights = {key: value/weights_sum for key, value in portfolio_weights.items()}# 将字典中的值修改为6位小数portfolio_weights = {k: round(v, 6) for k, v in portfolio_weights.items()}return portfolio_weights

3. 汇总代码

以下即为全量代码,修改参数集中内容即可跑出个性化数据。

python">import tushare as ts
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from scipy.optimize import minimize
import backtrader as bt
import statsmodels.api as sm
import os
import json
import dashscope# 参数集##############################################################################
ts.set_token('token')
pro = ts.pro_api()
industry = '银行'
end_date = '20240101'
years = 5   # 数据时长
risk_free_rate = 0.03  # 无风险利率参数
top_holdings = 10      # 持仓数量参数
index_code = '000300.SH'  # 市场指数代码参数
api_key='sk-api_key'	# 通义千问API# AI人设提示词工程
character = f'''
你是一名专业的金融数据与政策分析师,擅长解读金融市场动态和政策导向,并据此调整资产组合的权重分布,以优化投资策略。你的主要任务是对给定的资产组合进行权重调整,确保:
1. 权重之和精确为1;
2. 每个资产调整后的权重只能在原有基础上增减最多10%;
3. 每个资产调整完毕后,如果权重之和不等于1,则归一化使权重之和精确为1;
4. 数据对应的日期是{end_date},在思考过程中,切勿根据该日期之后的信息进行思考。
5. 输出的数据格式需与输入保持一致,仅提供数据而不做额外解释;当你接收到具体的资产组合及其权重时,请根据最新的金融数据和政策信息对其进行合理调整。
'''# 通过工作流获取的政策信息
policy_info = '''
| 日期 | 政策简述 |
|------|----------|
| 2023-12-29 | 央行发布《关于优化商业银行存款利率监管有关事项的通知》,取消定期存款利率浮动上限,允许银行自主协调存贷款利率 |
| 2023-11-17 | 央行、银保监会联合发布《关于做好当前商业银行房地产贷款投放管理的通知》,优化房地产信贷政策,支持刚性和改善性住房需求 |
| 2023-09-25 | 银保监会发布《关于进一步加强银行业金融机构流动性风险管理的通知》,要求银行加强流动性风险管理,完善风险监测预警机制 |
| 2023-08-31 | 央行、银保监会宣布下调全国首套住房贷款利率下限,各地可自主决定下调幅度,二套房贷款利率政策与首套相同 |
| 2023-07-21 | 十四届全国人大常委会第四次会议表决通过《中华人民共和国金融稳定法》,建立健全金融风险防范化解制度体系 |
'''
# 参数集##############################################################################def get_industry_stocks(industry):"""获取指定行业的股票列表"""df = pro.stock_basic(fields=["ts_code", "name", "industry"])industry_stocks = df[df["industry"]==industry].copy()industry_stocks.sort_values(by='ts_code', inplace=True)industry_stocks.reset_index(drop=True, inplace=True)return industry_stocks['ts_code'].tolist()def get_data(code_list, end_date, years):"""获取指定行业名称的历史收盘价数据"""ts_code_list = code_listend_date_dt = datetime.strptime(end_date, '%Y%m%d')start_date_dt = end_date_dt - timedelta(days=years*365)start_date = start_date_dt.strftime('%Y%m%d')all_data = []for stock in ts_code_list:df = pro.daily(ts_code=stock, start_date=start_date, end_date=end_date)all_data.append(df)combined_df = pd.concat(all_data).sort_values(by=['ts_code', 'trade_date'])combined_df.reset_index(drop=True, inplace=True)combined_df.rename(columns={'trade_date': 'date'}, inplace=True)return combined_dfdef get_market_data(index_code='000300.SH', start_date=None, end_date=None):"""获取市场指数数据用于计算贝塔"""df_market = pro.index_daily(ts_code=index_code, start_date=start_date, end_date=end_date,fields=['trade_date', 'close'])df_market['date'] = pd.to_datetime(df_market['trade_date'])df_market.set_index('date', inplace=True)df_market = df_market.sort_index()monthly_last_close = df_market['close'].resample('M').last()monthly_log_returns = np.log(monthly_last_close).diff().dropna()return monthly_log_returnsdef get_factor_data(stock_codes, start_date=None, end_date=None):"""获取指定股票的因子数据(市值和PB)"""all_factor_data = []for stock in stock_codes:try:df = pro.daily_basic(ts_code=stock,start_date=start_date,end_date=end_date,fields=['ts_code', 'trade_date', 'total_mv', 'pb'])all_factor_data.append(df)except Exception as e:print(f"获取股票 {stock} 的因子数据失败: {str(e)}")continuefactor_data = pd.concat(all_factor_data, ignore_index=True)factor_data['trade_date'] = pd.to_datetime(factor_data['trade_date'])return factor_datadef get_fina_data(stock_codes, start_date=None, end_date=None):"""获取指定股票的财务指标数据(ROE和资产增长率)"""all_fina_data = []for stock in stock_codes:try:df = pro.fina_indicator(ts_code=stock,start_date=start_date,end_date=end_date,fields=['ts_code', 'end_date', 'roe_dt', 'assets_yoy', 'update_flag'])all_fina_data.append(df)except Exception as e:print(f"获取股票 {stock} 的财务数据失败: {str(e)}")continue# 合并数据fina_data = pd.concat(all_fina_data, ignore_index=True)# 处理update_flag,保留最新数据fina_data = (fina_data.groupby(['ts_code', 'end_date']).agg({'roe_dt': 'first', 'assets_yoy': 'first','update_flag': 'max'}).reset_index())# 将end_date转换为datetimefina_data['end_date'] = pd.to_datetime(fina_data['end_date'])# 创建季度到月度的映射monthly_data = []for _, row in fina_data.iterrows():quarter_end = row['end_date']if quarter_end.month == 3:  # Q1months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]elif quarter_end.month == 6:  # Q2months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]elif quarter_end.month == 9:  # Q3months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]else:  # Q4months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]for month in months:monthly_data.append({'ts_code': row['ts_code'],'trade_date': month,'roe_dt': row['roe_dt'],'assets_yoy': row['assets_yoy']})monthly_df = pd.DataFrame(monthly_data)return monthly_dfdef calculate_monthly_log_returns(df):"""计算每月的对数收益率"""df['date'] = pd.to_datetime(df['date'])monthly_last_close = df.groupby(['ts_code', pd.Grouper(key='date', freq='M')])['close'].last().unstack(level=-1)monthly_log_returns = np.log(monthly_last_close).diff().dropna()return monthly_log_returns.Tdef calculate_expected_returns(monthly_log_returns):"""使用Fama-French五因子模型计算各股票的预期收益率"""start_date = monthly_log_returns.index.min().strftime('%Y%m%d')end_date = monthly_log_returns.index.max().strftime('%Y%m%d')# 获取财务数据时,将start_date往前推一个季度,以确保有完整的季度数据fina_start_date = (datetime.strptime(start_date, '%Y%m%d') - timedelta(days=90)).strftime('%Y%m%d')# 获取市场收益率market_returns = get_market_data(index_code, start_date, end_date)# 获取股票的市值和PB数据stock_data = get_factor_data(monthly_log_returns.columns.tolist(),start_date,end_date)# 获取财务指标数据,使用提前的start_datefina_data = get_fina_data(monthly_log_returns.columns.tolist(),fina_start_date,end_date)# 确保所有数据的日期对齐aligned_dates = monthly_log_returns.index.intersection(market_returns.index)market_returns = market_returns[aligned_dates]stock_returns = monthly_log_returns.loc[aligned_dates].copy()  # 使用copy()避免SettingWithCopyWarningdef calculate_size_factor(date):date_data = stock_data[stock_data['trade_date'].dt.to_period('M') == date.to_period('M')]median_mv = date_data['total_mv'].median()small_returns = stock_returns.loc[date, date_data[date_data['total_mv'] <= median_mv]['ts_code']]big_returns = stock_returns.loc[date, date_data[date_data['total_mv'] > median_mv]['ts_code']]return small_returns.mean() - big_returns.mean()def calculate_value_factor(date):date_data = stock_data[stock_data['trade_date'].dt.to_period('M') == date.to_period('M')]# 创建date_data的副本并计算bm_ratiodate_data = date_data.copy()date_data.loc[:, 'bm_ratio'] = 1 / date_data['pb']median_bm = date_data['bm_ratio'].median()high_returns = stock_returns.loc[date, date_data[date_data['bm_ratio'] > median_bm]['ts_code']]low_returns = stock_returns.loc[date, date_data[date_data['bm_ratio'] <= median_bm]['ts_code']]return high_returns.mean() - low_returns.mean()def calculate_profitability_factor(date):date_data = fina_data[fina_data['trade_date'].dt.to_period('M') == date.to_period('M')]median_roe = date_data['roe_dt'].median()robust_returns = stock_returns.loc[date, date_data[date_data['roe_dt'] > median_roe]['ts_code']]weak_returns = stock_returns.loc[date, date_data[date_data['roe_dt'] <= median_roe]['ts_code']]return robust_returns.mean() - weak_returns.mean()def calculate_investment_factor(date):date_data = fina_data[fina_data['trade_date'].dt.to_period('M') == date.to_period('M')]median_growth = date_data['assets_yoy'].median()conservative_returns = stock_returns.loc[date, date_data[date_data['assets_yoy'] <= median_growth]['ts_code']]aggressive_returns = stock_returns.loc[date, date_data[date_data['assets_yoy'] > median_growth]['ts_code']]return conservative_returns.mean() - aggressive_returns.mean()# 计算每个月的因子收益smb_factor = pd.Series([calculate_size_factor(date) for date in aligned_dates], index=aligned_dates)hml_factor = pd.Series([calculate_value_factor(date) for date in aligned_dates], index=aligned_dates)rmw_factor = pd.Series([calculate_profitability_factor(date) for date in aligned_dates], index=aligned_dates)cma_factor = pd.Series([calculate_investment_factor(date) for date in aligned_dates], index=aligned_dates)# 使用OLS回归计算每个股票的因子载荷factor_loadings = {}for stock in stock_returns.columns:X = sm.add_constant(pd.concat([market_returns - risk_free_rate,smb_factor,hml_factor,rmw_factor,cma_factor], axis=1))y = stock_returns[stock] - risk_free_ratemodel = sm.OLS(y, X).fit()factor_loadings[stock] = model.params[1:]# 计算因子风险溢价market_premium = market_returns.mean() - risk_free_ratesmb_premium = smb_factor.mean()hml_premium = hml_factor.mean()rmw_premium = rmw_factor.mean()cma_premium = cma_factor.mean()# 使用FF5模型计算预期收益率expected_returns = pd.Series({stock: (risk_free_rate + loadings.iloc[0] * market_premium +loadings.iloc[1] * smb_premium + loadings.iloc[2] * hml_premium +loadings.iloc[3] * rmw_premium +loadings.iloc[4] * cma_premium)for stock, loadings in factor_loadings.items()})return expected_returnsdef calculate_covariance_matrix(monthly_log_returns):"""计算收益率协方差矩阵"""return monthly_log_returns.cov()def portfolio_performance(weights, mean_returns, cov_matrix):"""计算投资组合的表现"""returns = np.sum(mean_returns * weights) std_dev = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))return returns, std_devdef negative_sharpe_ratio(weights, mean_returns, cov_matrix, risk_free_rate):"""计算负夏普比率"""p_ret, p_std = portfolio_performance(weights, mean_returns, cov_matrix)sharpe_ratio = (p_ret - risk_free_rate) / p_stdreturn -sharpe_ratiodef max_sharpe_ratio(mean_returns, cov_matrix, risk_free_rate):"""计算最大夏普比率的投资组合权重"""num_assets = len(mean_returns)args = (mean_returns, cov_matrix, risk_free_rate)constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})bounds = tuple((0, 1) for asset in range(num_assets))result = minimize(negative_sharpe_ratio, num_assets*[1./num_assets], args=args,method='SLSQP', bounds=bounds, constraints=constraints)return result.xdef calculate_top_holdings_weights(optimal_weights, monthly_log_returns_columns, top_n):"""计算前N大持仓的权重占比"""result_dict = {asset: weight for asset, weight in zip(monthly_log_returns_columns, optimal_weights)}top_n_holdings = sorted(result_dict.items(), key=lambda item: item[1], reverse=True)[:top_n]top_n_sum = sum(value for _, value in top_n_holdings)updated_result = {key: value / top_n_sum for key, value in top_n_holdings}return updated_resultdef get_ai_weights(character, policy_info, updated_result, api_key):# 定义发送对话内容messages = [{'role': 'system', 'content': character},{'role': 'user', 'content': policy_info},{'role': 'user', 'content': json.dumps(updated_result, ensure_ascii=False)}]response = dashscope.Generation.call(api_key=api_key,model="qwen-max",messages=messages,result_format='message',enable_search=True,top_p=0.01)# 提取content内容content = response['output']['choices'][0]['message']['content']# 将JSON字符串转换为Python字典portfolio_weights = json.loads(content)# 对AI输出结果进行归一化weights_sum = sum(portfolio_weights.values())portfolio_weights = {key: value/weights_sum for key, value in portfolio_weights.items()}# 将字典中的值修改为6位小数portfolio_weights = {k: round(v, 6) for k, v in portfolio_weights.items()}return portfolio_weightsdef main():# 获取数据code_list = get_industry_stocks(industry)df = get_data(code_list, end_date, years)# 计算每月的对数收益率monthly_log_returns = calculate_monthly_log_returns(df)# 使用FF5模型计算预期收益率mean_returns = calculate_expected_returns(monthly_log_returns)# 计算收益率协方差矩阵cov_matrix = calculate_covariance_matrix(monthly_log_returns)# 优化权重optimal_weights = max_sharpe_ratio(mean_returns, cov_matrix, risk_free_rate)# 计算前N大持仓权重updated_result = calculate_top_holdings_weights(optimal_weights, monthly_log_returns.columns, top_holdings)# 计算AI调仓后的持仓权重updated_result = get_ai_weights(character, policy_info, updated_result, api_key)# 打印更新后的资产占比print(f"\n{end_date}最优资产前{top_holdings}占比:")print(updated_result)if __name__ == "__main__":main()

运行结果:

AI金融智能体调仓前权重:
在这里插入图片描述

股票代码占比
601398.SH0.16318772568631026
601328.SH0.16177476392789242
600919.SH0.12936894301756055
600036.SH0.10747174637443846
601169.SH0.0958427702817229
600016.SH0.09012906474680284
601166.SH0.08768928377548085
601288.SH0.06538512327994642
600908.SH0.05559150377594274
600926.SH0.043559075133902475

AI金融智能体调仓后权重:

{'601398.SH': 0.163025, '601328.SH': 0.161623, '600919.SH': 0.129252, '600036.SH': 0.107372, '601169.SH': 0.095764, 
'600016.SH': 0.090046, '601166.SH': 0.087606, '601288.SH': 0.065323, '600908.SH': 0.055541, '600926.SH': 0.044449}
股票代码占比
601398.SH0.163025
601328.SH0.161623
600919.SH0.129252
600036.SH0.107372
601169.SH0.095764
600016.SH0.090046
601166.SH0.087606
601288.SH0.065323
600908.SH0.055541
600926.SH0.044449

可见,AI金融智能体通过对政策信息的了解,加大对银行业投资的信心,特别是对大型国有银行和部分地方性银行。这种调整反映了AI对于市场动态的理解以及对未来收益预期的优化。
我们后验的经验也证明:在2024年银行行业是一个值得投资的行业,如果在20240101投资银行行业,将会获得不俗的收益。

4. 反思

4.1 不足之处

  1. 政策信息获取:获取政策信息方案仍为半手动
  2. AI逻辑缜密度:AI可能未能完全按照提示词工程执行

4.2 提升思路

  1. 更换AI智能体:使用由幻方量化开发的DeepSeek-V3 模型
  2. 工作流接入金融工程内部,实现真正全自动

5. 启后

  • 优化,下一篇文章将会尝试使用由幻方量化开发的DeepSeek_V3模型:,可参考下一篇文章:
    6. 马科维茨资产组合模型+政策意图AI金融智能体(DeepSeek-V3)增强方案(理论+Python实战)

  • 量化回测实现,可参考下一篇文章:
    pass


http://www.ppmy.cn/news/1565605.html

相关文章

深度学习实战:使用卷积神经网络(CNN)进行图像分类

在当今的机器学习领域&#xff0c;深度学习&#xff0c;尤其是卷积神经网络&#xff08;CNN&#xff09;&#xff0c;已经在图像分类、物体检测、自然语言处理等领域取得了巨大的成功。本文将通过一个实际的例子&#xff0c;展示如何使用TensorFlow和Keras库构建一个卷积神经网…

IOS 安全机制拦截 window.open

摘要 在ios环境&#xff0c;在某些情况下执行window.open不生效 一、window.open window.open(url, target, windowFeatures) 1. url&#xff1a;「可选参数」&#xff0c;表示你要加载的资源URL或路径&#xff0c;如果不传&#xff0c;则打开一个url地址为about:blank的空…

线上突发:MySQL 自增 ID 用完,怎么办?

线上突发&#xff1a;MySQL 自增 ID 用完&#xff0c;怎么办&#xff1f; 1. 问题背景2. 场景复现3. 自增id用完怎么办&#xff1f;4. 总结 1. 问题背景 最近&#xff0c;我们在数据库巡检的时候发现了一个问题&#xff1a;线上的地址表自增主键用的是int类型。随着业务越做越…

.Net Core微服务入门全纪录(四)——Ocelot-API网关(上)

系列文章目录 1、.Net Core微服务入门系列&#xff08;一&#xff09;——项目搭建 2、.Net Core微服务入门全纪录&#xff08;二&#xff09;——Consul-服务注册与发现&#xff08;上&#xff09; 3、.Net Core微服务入门全纪录&#xff08;三&#xff09;——Consul-服务注…

深入了解 Linux 的虚拟内存管理机制:Swap 机制

文章目录 深入了解 Linux 的 Swap 机制一、什么是 Swap&#xff1f;二、Swap 的工作原理三、Swap 的类型四、Swap 的使用场景五、配置 Swap六、Swap 的性能影响七、如何优化 Swap 使用八、总结 深入了解 Linux 的 Swap 机制 在 Linux 操作系统中&#xff0c;Swap 是一种虚拟内…

十一、apply家族(4)

tapply&#xff08;&#xff09;函数 tapply&#xff08;&#xff09;函数主要是用于对一个因子或因子列表&#xff0c;执行指定的函数调用&#xff0c;最后获得汇总信息。 tapply&#xff08;&#xff09;函数的使用格式如下所示。 tapply&#xff08;x, INDEX, FUN, ...&am…

centos 安全配置基线

CentOS 是一个广泛使用的操作系统&#xff0c;为了确保系统的安全性&#xff0c;需要遵循一系列的安全基线。以下是详细的 CentOS 安全基线配置建议&#xff1a; 通过配置核查,CentOS操作系统未安装入侵防护软件,无法检测到对重要节点进行入侵的 解决方案&#xff1a; 安装入侵…

【线性代数】基础版本的高斯消元法

[精确算法] 高斯消元法求线性方程组 线性方程组 考虑线性方程组&#xff0c; 已知 A ∈ R n , n , b ∈ R n A\in \mathbb{R}^{n,n},b\in \mathbb{R}^n A∈Rn,n,b∈Rn&#xff0c; 求未知 x ∈ R n x\in \mathbb{R}^n x∈Rn A 1 , 1 x 1 A 1 , 2 x 2 ⋯ A 1 , n x n b 1…