doris:Broker Load

news/2025/1/23 18:09:09/

Broker Load 通过 MySQL API 发起,Doris 会根据 LOAD 语句中的信息,主动从数据源拉取数据。Broker Load 是一个异步导入方式,需要通过 SHOW LOAD 语句查看导入进度和导入结果。

Broker Load 适合源数据存储在远程存储系统,比如对象存储或 HDFS,且数据量比较大的场景。 从 HDFS 或者 S3 直接读取,也可以通过 湖仓一体/TVF 中的 HDFS TVF 或者 S3 TVF 进行导入。基于 TVF 的 Insert Into 当前为同步导入,Broker Load 是一个异步的导入方式。

使用限制​

支持的存储后端:

  • S3 协议
  • HDFS 协议
  • 其他协议(需要相应的 Broker 进程)

支持的数据类型:

  • CSV
  • JSON
  • PARQUET
  • ORC

支持的压缩类型:

  • PLAIN
  • GZ
  • LZO
  • BZ2
  • LZ4FRAME
  • DEFLATE
  • LZOP
  • LZ4BLOCK
  • SNAPPYBLOCK
  • ZLIB
  • ZSTD

基本原理​

用户在提交导入任务后,FE 会生成对应的 Plan 并根据目前 BE 的个数和文件的大小,将 Plan 分给 多个 BE 执行,每个 BE 执行一部分导入数据。

BE 在执行的过程中会从 Broker 拉取数据,在对数据 transform 之后将数据导入系统。所有 BE 均完成导入,由 FE 最终决定导入是否成功。

Broker Load 基本原理

从上图中可以看到,BE 会依赖 Broker 进程来读取相应远程存储系统的数据。之所以引入 Broker 进程,主要是用来针对不同的远程存储系统,用户可以按照 Broker 进程的标准开发其相应的 Broker 进程,Broker 进程可以使用 Java 程序开发,更好的兼容大数据生态中的各类存储系统。由于 broker 进程和 BE 进程的分离,也确保了两个进程的错误隔离,提升 BE 的稳定性。

当前 BE 内置了对 HDFS 和 S3 两个 Broker 的支持,所以如果从 HDFS 和 S3 中导入数据,则不需要额外启动 Broker 进程。如果有自己定制的 Broker 实现,则需要部署相应的 Broker 进程。

快速上手​

本节演示了一个 S3 Load 的例子。具体的使用语法,请参考 SQL 手册中的 Broker Load。

前置检查​

  1. Doris 表权限

Broker Load 需要对目标表的 INSERT 权限。如果没有 INSERT 权限,可以通过 GRANT 命令给用户授权。

  1. S3 认证和连接信息

这里以 AWS S3 为例,从其他对象存储系统导入也可以作为参考。

  • AK 和 SK:首先需要找到或者重新生成 AWS Access keys,可以在 AWS console 的 My Security Credentials 找到生成方式。

  • REGION 和 ENDPOINT:REGION 可以在创建桶的时候选择也可以在桶列表中查看到。每个 REGION 的 S3 ENDPOINT 可以通过如下页面查到 AWS 文档。

创建导入作业​

  1. 创建 CSV 文件 brokerload_example.csv 文件存储在 S3 上,其内容如下:
1,Emily,25
2,Benjamin,35
3,Olivia,28
4,Alexander,60
5,Ava,17
6,William,69
7,Sophia,32
8,James,64
9,Emma,37
10,Liam,64

  1. 创建导入 Doris 表

在 Doris 中创建被导入的表,具体语法如下:

CREATE TABLE testdb.test_brokerload(user_id            BIGINT       NOT NULL COMMENT "user id",name               VARCHAR(20)           COMMENT "name",age                INT                   COMMENT "age"
)
DUPLICATE KEY(user_id)
DISTRIBUTED BY HASH(user_id) BUCKETS 10;

  1. 使用 Broker Load 从 S3 导入数据。其中 bucket 名称和 S3 认证信息要根据实际填写:
    LOAD LABEL broker_load_2022_04_01(DATA INFILE("s3://your_bucket_name/brokerload_example.csv")INTO TABLE test_brokerloadCOLUMNS TERMINATED BY ","FORMAT AS "CSV"(user_id, name, age))WITH S3("provider" = "S3","AWS_ENDPOINT" = "s3.us-west-2.amazonaws.com","AWS_ACCESS_KEY" = "<your-ak>","AWS_SECRET_KEY"="<your-sk>","AWS_REGION" = "us-west-2","compress_type" = "PLAIN")PROPERTIES("timeout" = "3600");

其中 provider 字段需要根据实际的对象存储服务商填写。 Doris 支持的 provider 列表:

  • "OSS" (阿里云)
  • "COS" (腾讯云)
  • "OBS" (华为云)
  • "BOS" (百度云)
  • "S3" (亚马逊 AWS)
  • "AZURE" (微软 Azure)
  • "GCP" (谷歌 GCP)

如不在列表中 (例如 MinIO),可以尝试使用 "S3" (兼容 AWS 模式)

查看导入作业​

Broker load 是一个异步的导入方式,具体导入结果可以通过 SHOW LOAD 命令查看

mysql> show load order by createtime desc limit 1\G;
*************************** 1. row ***************************JobId: 41326624Label: broker_load_2022_04_01State: FINISHEDProgress: ETL:100%; LOAD:100%Type: BROKEREtlInfo: unselected.rows=0; dpp.abnorm.ALL=0; dpp.norm.ALL=27TaskInfo: cluster:N/A; timeout(s):1200; max_filter_ratio:0.1ErrorMsg: NULLCreateTime: 2022-04-01 18:59:06EtlStartTime: 2022-04-01 18:59:11EtlFinishTime: 2022-04-01 18:59:11LoadStartTime: 2022-04-01 18:59:11
LoadFinishTime: 2022-04-01 18:59:11URL: NULLJobDetails: {"Unfinished backends":{"5072bde59b74b65-8d2c0ee5b029adc0":[]},"ScannedRows":27,"TaskNumber":1,"All backends":{"5072bde59b74b65-8d2c0ee5b029adc0":[36728051]},"FileNumber":1,"FileSize":5540}
1 row in set (0.01 sec)

取消导入作业​

当 Broker load 作业状态不为 CANCELLED 或 FINISHED 时,可以被用户手动取消。取消时需要指定待取消导入任务的 Label。取消导入命令语法可执行 CANCEL LOAD 查看。

例如:取消数据库 demo 上,label 为 broker_load_2022_04_01 的导入作业

CANCEL LOAD FROM demo WHERE LABEL = "broker_load_2022_04_01";

参考手册​

导入命令​

LOAD LABEL load_label
(
data_desc1[, data_desc2, ...]
)
WITH [S3|HDFS|BROKER broker_name] 
[broker_properties]
[load_properties]
[COMMENT "comments"];

其中 WITH 子句指定了如何访问存储系统,broker_properties 则是该访问方式的配置参数

  • S3: 使用 S3 协议的存储系统
  • HDFS: 使用 HDFS 协议的存储系统
  • BROKER broker_name: 其他协议的存储系统。可以通过 SHOW BROKER 查看目前可选的 broker_name 列表。更多信息见常见问题中的 "其他 Broker 导入"

导入配置参数​

load properties

Property 名称类型默认值说明
"timeout"Long14400导入的超时时间,单位秒。范围是 1 秒 ~ 259200 秒。
"max_filter_ratio"Float0.0最大容忍可过滤(数据不规范等原因)的数据比例,默认零容忍。取值范围是 0~1。当导入的错误率超过该值,则导入失败。数据不规范不包括通过 where 条件过滤掉的行。
"exec_mem_limit"Long2147483648 (2GB)导入内存限制。默认为 2GB。单位为字节。
"strict_mode"Booleanfalse是否开启严格模式。
"partial_columns"Booleanfalse是否使用部分列更新,只在表模型为 Unique Key 且采用 Merge on Write 时有效。
"timezone"String"Asia/Shanghai"本次导入所使用的时区。该参数会影响所有导入涉及的和时区有关的函数结果。
"load_parallelism"Integer8每个 BE 上并发 instance 数量的上限。
"send_batch_parallelism"Integer1sink 节点发送数据的并发度,仅在关闭 memtable 前移时生效。
"load_to_single_tablet"Boolean"false"是否每个分区只导入一个 tablet,默认值为 false。该参数只允许在对带有 random 分桶的 OLAP 表导数的时候设置。
"skip_lines"Integer"0"跳过 CSV 文件的前几行。当设置 format 设置为 csv_with_names或csv_with_names_and_types时,该参数会失效。
"trim_double_quotes"Boolean"false"是否裁剪掉导入文件每个字段最外层的双引号。
"priority""HIGH" 或 "NORMAL" 或 "LOW""NORMAL"导入任务的优先级。

fe.conf

下面几个配置属于 Broker load 的系统级别配置,也就是作用于所有 Broker load 导入任务的配置。主要通过修改 fe.conf来调整配置值。

Session Variable类型默认值说明
min_bytes_per_broker_scannerLong67108864 (64 MB)一个 Broker Load 作业中单 BE 处理的数据量的最小值,单位:字节。
max_bytes_per_broker_scannerLong536870912000 (500 GB)一个 Broker Load 作业中单 BE 处理的数据量的最大值,单位:字节。通常一个导入作业支持的最大数据量为 max_bytes_per_broker_scanner * BE 节点数。如果需要导入更大数据量,则需要适当调整 max_bytes_per_broker_scanner 参数的大小。
max_broker_concurrencyInteger10限制了一个作业的最大的导入并发数。
default_load_parallelismInteger8每个 BE 节点最大并发 instance 数
broker_load_default_timeout_second14400Broker Load 导入的默认超时时间,单位:秒。

注:最小处理的数据量,最大并发数,源文件的大小和当前集群 BE 的个数共同决定了本次导入的并发数。

本次导入并发数 = Math.min(源文件大小/min_bytes_per_broker_scanner,max_broker_concurrency,当前BE节点个数 * load_parallelism)
本次导入单个BE的处理量 = 源文件大小/本次导入的并发数

session variable

Session Variable类型默认值说明
exec_mem_limitLong2147483648 (2GB)导入内存限制,单位:字节。
time_zoneString"Asia/Shanghai"默认时区,会影响导入中时区相关的函数结果。
send_batch_parallelismInteger1sink 节点发送数据的并发度,仅在关闭 memtable 前移时生效。

常见问题​

常见报错​

1. 导入报错:Scan bytes per broker scanner exceed limit:xxx

请参照文档中最佳实践部分,修改 FE 配置项 max_bytes_per_broker_scanner 和 max_broker_concurrency

2. 导入报错:failed to send batch 或 TabletWriter add batch with unknown id

适当修改 query_timeout 和 streaming_load_rpc_max_alive_time_sec

3. 导入报错:LOAD_RUN_FAIL; msg:Invalid Column Name:xxx

如果是 PARQUET 或者 ORC 格式的数据,则文件头的列名需要与 doris 表中的列名保持一致,如:

(tmp_c1,tmp_c2)
SET
(id=tmp_c2,name=tmp_c1
)

代表获取在 parquet 或 orc 中以 (tmp_c1, tmp_c2) 为列名的列,映射到 doris 表中的 (id, name) 列。如果没有设置 set, 则以 column 中的列作为映射。

注:如果使用某些 hive 版本直接生成的 orc 文件,orc 文件中的表头并非 hive meta 数据,而是(_col0, _col1, _col2, ...), 可能导致 Invalid Column Name 错误,那么则需要使用 set 进行映射

4. 导入报错:Failed to get S3 FileSystem for bucket is null/empty

bucket 信息填写不正确或者不存在。或者 bucket 的格式不受支持。使用 GCS 创建带_的桶名时,比如:s3://gs_bucket/load_tbl,S3 Client 访问 GCS 会报错,建议创建 bucket 路径时不使用_

5. 导入超时

导入的 timeout 默认超时时间为 4 小时。如果超时,不推荐用户将导入最大超时时间直接改大来解决问题。单个导入时间如果超过默认的导入超时时间 4 小时,最好是通过切分待导入文件并且分多次导入来解决问题。因为超时时间设置过大,那么单次导入失败后重试的时间成本很高。

可以通过如下公式计算出 Doris 集群期望最大导入文件数据量:

期望最大导入文件数据量 = 14400s * 10M/s * BE 个数
比如:集群的 BE 个数为 10个
期望最大导入文件数据量 = 14400s * 10M/s * 10 = 1440000M ≈ 1440G注意:一般用户的环境可能达不到 10M/s 的速度,所以建议超过 500G 的文件都进行文件切分,再导入。

S3 Load URL 访问方式​

  • S3 SDK 默认使用 virtual-hosted-style 方式。但某些对象存储系统可能没开启或没支持 virtual-hosted-style 方式的访问,此时我们可以添加 use_path_style 参数来强制使用 path-style 方式:

      WITH S3("AWS_ENDPOINT" = "AWS_ENDPOINT","AWS_ACCESS_KEY" = "AWS_ACCESS_KEY","AWS_SECRET_KEY"="AWS_SECRET_KEY","AWS_REGION" = "AWS_REGION","use_path_style" = "true")
    

S3 Load 临时密钥​

  • 支持使用临时秘钥 (TOKEN) 访问所有支持 S3 协议的对象存储,用法如下:

      WITH S3("AWS_ENDPOINT" = "AWS_ENDPOINT","AWS_ACCESS_KEY" = "AWS_TEMP_ACCESS_KEY","AWS_SECRET_KEY" = "AWS_TEMP_SECRET_KEY","AWS_TOKEN" = "AWS_TEMP_TOKEN","AWS_REGION" = "AWS_REGION")
    

HDFS 认证方式​

  1. 简单认证

简单认证即 Hadoop 配置 hadoop.security.authentication 为 simple

("username" = "user","password" = ""
);

username 配置为要访问的用户,密码置空即可。

  1. Kerberos 认证

该认证方式需提供以下信息:

  • hadoop.security.authentication:指定认证方式为 Kerberos。

  • hadoop.kerberos.principal:指定 Kerberos 的 principal。

  • hadoop.kerberos.keytab:指定 Kerberos 的 keytab 文件路径。该文件必须为 Broker 进程所在服务器上的文件的绝对路径。并且可以被 Broker 进程访问。

  • kerberos_keytab_content:指定 Kerberos 中 keytab 文件内容经过 base64 编码之后的内容。这个跟 kerberos_keytab 配置二选一即可。

示例如下:

("hadoop.security.authentication" = "kerberos","hadoop.kerberos.principal" = "doris@YOUR.COM","hadoop.kerberos.keytab" = "/home/doris/my.keytab"
)
("hadoop.security.authentication" = "kerberos","hadoop.kerberos.principal" = "doris@YOUR.COM","kerberos_keytab_content" = "ASDOWHDLAWIDJHWLDKSALDJSDIWALD"
)

采用 Kerberos 认证方式,需要 krb5.conf (opens new window) 文件,krb5.conf 文件包含 Kerberos 的配置信息,通常,应该将 krb5.conf 文件安装在目录/etc 中。可以通过设置环境变量 KRB5_CONFIG 覆盖默认位置。krb5.conf 文件的内容示例如下:

[libdefaults]default_realm = DORIS.HADOOPdefault_tkt_enctypes = des3-hmac-sha1 des-cbc-crcdefault_tgs_enctypes = des3-hmac-sha1 des-cbc-crcdns_lookup_kdc = truedns_lookup_realm = false[realms]DORIS.HADOOP = {kdc = kerberos-doris.hadoop.service:7005}

HDFS HA 模式​

这个配置用于访问以 HA 模式部署的 HDFS 集群。

  • dfs.nameservices:指定 HDFS 服务的名字,自定义,如:"dfs.nameservices" = "my_ha"。

  • dfs.ha.namenodes.xxx:自定义 namenode 的名字,多个名字以逗号分隔。其中 xxx 为 dfs.nameservices 中自定义的名字,如: "dfs.ha.namenodes.my_ha" = "my_nn"。

  • dfs.namenode.rpc-address.xxx.nn:指定 namenode 的 rpc 地址信息。其中 nn 表示 dfs.ha.namenodes.xxx 中配置的 namenode 的名字,如:"dfs.namenode.rpc-address.my_ha.my_nn" = "host:port"。

  • dfs.client.failover.proxy.provider.[nameservice ID]:指定 client 连接 namenode 的 provider,默认为:org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider。

示例如下:

("fs.defaultFS" = "hdfs://my_ha","dfs.nameservices" = "my_ha","dfs.ha.namenodes.my_ha" = "my_namenode1, my_namenode2","dfs.namenode.rpc-address.my_ha.my_namenode1" = "nn1_host:rpc_port","dfs.namenode.rpc-address.my_ha.my_namenode2" = "nn2_host:rpc_port","dfs.client.failover.proxy.provider.my_ha" = "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider"
)

HA 模式可以和前面两种认证方式组合,进行集群访问。如通过简单认证访问 HA HDFS:

("username"="user","password"="passwd","fs.defaultFS" = "hdfs://my_ha","dfs.nameservices" = "my_ha","dfs.ha.namenodes.my_ha" = "my_namenode1, my_namenode2","dfs.namenode.rpc-address.my_ha.my_namenode1" = "nn1_host:rpc_port","dfs.namenode.rpc-address.my_ha.my_namenode2" = "nn2_host:rpc_port","dfs.client.failover.proxy.provider.my_ha" = "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider"
)

其他 Broker 导入​

其他远端存储系统的 Broker 是 Doris 集群中一种可选进程,主要用于支持 Doris 读写远端存储上的文件和目录。目前提供了如下存储系统的 Broker 实现。

  • 阿里云 OSS

  • 百度云 BOS

  • 腾讯云 CHDFS

  • 腾讯云 GFS

  • 华为云 OBS

  • JuiceFS

  • GCS

Broker 通过提供一个 RPC 服务端口来提供服务,是一个无状态的 Java 进程,负责为远端存储的读写操作封装一些类 POSIX 的文件操作,如 open,pread,pwrite 等等。除此之外,Broker 不记录任何其他信息,所以包括远端存储的连接信息、文件信息、权限信息等等,都需要通过参数在 RPC 调用中传递给 Broker 进程,才能使得 Broker 能够正确读写文件。

Broker 仅作为一个数据通路,并不参与任何计算,因此仅需占用较少的内存。通常一个 Doris 系统中会部署一个或多个 Broker 进程。并且相同类型的 Broker 会组成一个组,并设定一个 名称(Broker name)。

这里主要介绍 Broker 在访问不同远端存储时需要的参数,如连接信息、权限认证信息等等。

Broker 信息

Broker 的信息包括 名称(Broker name)和 认证信息 两部分。通常的语法格式如下:

WITH BROKER "broker_name" 
("username" = "xxx","password" = "yyy","other_prop" = "prop_value",...
);

  • 名称

通常用户需要通过操作命令中的 WITH BROKER "broker_name" 子句来指定一个已经存在的 Broker Name。Broker Name 是用户在通过 ALTER SYSTEM ADD BROKER 命令添加 Broker 进程时指定的一个名称。一个名称通常对应一个或多个 Broker 进程。Doris 会根据名称选择可用的 Broker 进程。用户可以通过 SHOW BROKER 命令查看当前集群中已经存在的 Broker。

备注

Broker Name 只是一个用户自定义名称,不代表 Broker 的类型。

  • 认证信息

不同的 Broker 类型,以及不同的访问方式需要提供不同的认证信息。认证信息通常在 WITH BROKER "broker_name" 之后的 Property Map 中以 Key-Value 的方式提供。

导入示例​

导入 HDFS 上的 TXT 文件​

LOAD LABEL demo.label_20220402
(DATA INFILE("hdfs://host:port/tmp/test_hdfs.txt")INTO TABLE `load_hdfs_file_test`COLUMNS TERMINATED BY "\t"            (id,age,name)
) 
with HDFS
("fs.defaultFS"="hdfs://host:port","hadoop.username" = "user"
)
PROPERTIES
("timeout"="1200","max_filter_ratio"="0.1"
);

HDFS 需要配置 NameNode HA 的情况​

LOAD LABEL demo.label_20220402
(DATA INFILE("hdfs://hafs/tmp/test_hdfs.txt")INTO TABLE `load_hdfs_file_test`COLUMNS TERMINATED BY "\t"            (id,age,name)
) 
with HDFS
("hadoop.username" = "user","fs.defaultFS"="hdfs://hafs","dfs.nameservices" = "hafs","dfs.ha.namenodes.hafs" = "my_namenode1, my_namenode2","dfs.namenode.rpc-address.hafs.my_namenode1" = "nn1_host:rpc_port","dfs.namenode.rpc-address.hafs.my_namenode2" = "nn2_host:rpc_port","dfs.client.failover.proxy.provider.hafs" = "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider"
)
PROPERTIES
("timeout"="1200","max_filter_ratio"="0.1"
);

从 HDFS 导入数据,使用通配符匹配两批文件,分别导入到两个表中​

LOAD LABEL example_db.label2
(DATA INFILE("hdfs://host:port/input/file-10*")INTO TABLE `my_table1`PARTITION (p1)COLUMNS TERMINATED BY ","(k1, tmp_k2, tmp_k3)SET (k2 = tmp_k2 + 1,k3 = tmp_k3 + 1),DATA INFILE("hdfs://host:port/input/file-20*")INTO TABLE `my_table2`COLUMNS TERMINATED BY ","(k1, k2, k3)
)
with HDFS
("fs.defaultFS"="hdfs://host:port","hadoop.username" = "user"
);

使用通配符匹配导入两批文件 file-10* 和 file-20*。分别导入到 my_table1 和 my_table2 两张表中。其中 my_table1 指定导入到分区 p1 中,并且将导入源文件中第二列和第三列的值 +1 后导入。

使用通配符从 HDFS 导入一批数据​

LOAD LABEL example_db.label3
(DATA INFILE("hdfs://host:port/user/doris/data/*/*")INTO TABLE `my_table`COLUMNS TERMINATED BY "\\x01"
)
with HDFS
("fs.defaultFS"="hdfs://host:port","hadoop.username" = "user"
);

指定分隔符为 Hive 经常用的默认分隔符 \\x01,并使用通配符 * 指定 data 目录下所有目录的所有文件。

导入 Parquet 格式数据,指定 FORMAT 为 parquet

```SQL
LOAD LABEL example_db.label4
(DATA INFILE("hdfs://host:port/input/file")INTO TABLE `my_table`FORMAT AS "parquet"(k1, k2, k3)
)
with HDFS
("fs.defaultFS"="hdfs://host:port","hadoop.username" = "user"
);
```

默认是通过文件后缀判断。

导入数据,并提取文件路径中的分区字段​

LOAD LABEL example_db.label5
(DATA INFILE("hdfs://host:port/input/city=beijing/*/*")INTO TABLE `my_table`FORMAT AS "csv"(k1, k2, k3)COLUMNS FROM PATH AS (city, utc_date)
)
with HDFS
("fs.defaultFS"="hdfs://host:port","hadoop.username" = "user"
);

my_table 表中的列为 k1, k2, k3, city, utc_date

其中 hdfs://hdfs_host:hdfs_port/user/doris/data/input/dir/city=beijing 目录下包括如下文件:

hdfs://hdfs_host:hdfs_port/input/city=beijing/utc_date=2020-10-01/0000.csv
hdfs://hdfs_host:hdfs_port/input/city=beijing/utc_date=2020-10-02/0000.csv
hdfs://hdfs_host:hdfs_port/input/city=tianji/utc_date=2020-10-03/0000.csv
hdfs://hdfs_host:hdfs_port/input/city=tianji/utc_date=2020-10-04/0000.csv

文件中只包含 k1, k2, k3 三列数据,city, utc_date 这两列数据会从文件路径中提取。

对导入数据进行过滤​

LOAD LABEL example_db.label6
(DATA INFILE("hdfs://host:port/input/file")INTO TABLE `my_table`(k1, k2, k3)SET (k2 = k2 + 1)PRECEDING FILTER k1 = 1WHERE k1 > k2
)
with HDFS
("fs.defaultFS"="hdfs://host:port","hadoop.username" = "user"
);

只有原始数据中,k1 = 1,并且转换后,k1 > k2 的行才会被导入。

导入数据,提取文件路径中的时间分区字段​

LOAD LABEL example_db.label7
(DATA INFILE("hdfs://host:port/user/data/*/test.txt") INTO TABLE `tbl12`COLUMNS TERMINATED BY ","(k2,k3)COLUMNS FROM PATH AS (data_time)SET (data_time=str_to_date(data_time, '%Y-%m-%d %H%%3A%i%%3A%s'))
)
with HDFS
("fs.defaultFS"="hdfs://host:port","hadoop.username" = "user"
);

提示

时间包含 %3A。在 hdfs 路径中,不允许有 ':',所有 ':' 会由 %3A 替换。

路径下有如下文件:

/user/data/data_time=2020-02-17 00%3A00%3A00/test.txt
/user/data/data_time=2020-02-18 00%3A00%3A00/test.txt

表结构为:

CREATE TABLE IF NOT EXISTS tbl12 (data_time DATETIME,k2        INT,k3        INT
) DISTRIBUTED BY HASH(data_time) BUCKETS 10
PROPERTIES ("replication_num" = "3"
);

使用 Merge 方式导入​

LOAD LABEL example_db.label8
(MERGE DATA INFILE("hdfs://host:port/input/file")INTO TABLE `my_table`(k1, k2, k3, v2, v1)DELETE ON v2 > 100
)
with HDFS
("fs.defaultFS"="hdfs://host:port","hadoop.username"="user"
)
PROPERTIES
("timeout" = "3600","max_filter_ratio" = "0.1"
);

使用 Merge 方式导入。my_table 必须是一张 Unique Key 的表。当导入数据中的 v2 列的值大于 100 时,该行会被认为是一个删除行。导入任务的超时时间是 3600 秒,并且允许错误率在 10% 以内。

导入时指定 source_sequence 列,保证替换顺序​

LOAD LABEL example_db.label9
(DATA INFILE("hdfs://host:port/input/file")INTO TABLE `my_table`COLUMNS TERMINATED BY ","(k1,k2,source_sequence,v1,v2)ORDER BY source_sequence
) 
with HDFS
("fs.defaultFS"="hdfs://host:port","hadoop.username"="user"
);

my_table 必须是 Unique Key 模型表,并且指定了 Sequence 列。数据会按照源数据中 source_sequence 列的值来保证顺序性。

  • 导入指定文件格式为 json,并指定 json_rootjsonpaths

    LOAD LABEL example_db.label10
    (DATA INFILE("hdfs://host:port/input/file.json")INTO TABLE `my_table`FORMAT AS "json"PROPERTIES("json_root" = "$.item","jsonpaths" = "[\"$.id\", \"$.city\", \"$.code\"]")       
    )
    with HDFS
    ("fs.defaultFS"="hdfs://host:port","hadoop.username"="user"
    );
    

    jsonpaths 也可以与 column list 及 SET (column_mapping)配合使用:

    LOAD LABEL example_db.label10
    (DATA INFILE("hdfs://host:port/input/file.json")INTO TABLE `my_table`FORMAT AS "json"(id, code, city)SET (id = id * 10)PROPERTIES("json_root" = "$.item","jsonpaths" = "[\"$.id\", \"$.city\", \"$.code\"]")       
    )
    with HDFS
    ("fs.defaultFS"="hdfs://host:port","hadoop.username"="user"
    );
    

从其他 Broker 导入​

  • 阿里云 OSS
("fs.oss.accessKeyId" = "","fs.oss.accessKeySecret" = "","fs.oss.endpoint" = ""
)

  • 百度云 BOS

当前使用 BOS 时需要下载相应的 SDK 包,具体配置与使用,可以参考 BOS HDFS 官方文档。在下载完成并解压后将 jar 包放到 broker 的 lib 目录下。

("fs.bos.access.key" = "xx","fs.bos.secret.access.key" = "xx","fs.bos.endpoint" = "xx"
)

  • 华为云 OBS
("fs.obs.access.key" = "xx","fs.obs.secret.key" = "xx","fs.obs.endpoint" = "xx"
)

  • JuiceFS
("fs.defaultFS" = "jfs://xxx/","fs.jfs.impl" = "io.juicefs.JuiceFileSystem","fs.AbstractFileSystem.jfs.impl" = "io.juicefs.JuiceFS","juicefs.meta" = "xxx","juicefs.access-log" = "xxx"
)

  • GCS

在使用 Broker 访问 GCS 时,Project ID 是必须的,其他参数可选,所有参数配置请参考 GCS Config

("fs.gs.project.id" = "Your Project ID","fs.AbstractFileSystem.gs.impl" = "com.google.cloud.hadoop.fs.gcs.GoogleHadoopFS","fs.gs.impl" = "com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem",
)


http://www.ppmy.cn/news/1565549.html

相关文章

ARM-V9 CCA/RME QEMU环境搭建

整个用于 CCA 的软件栈仍在开发中,这意味着指令会频繁更改,且仓库可能是临时的。有关手动编译该栈以及从 OP-TEE 构建环境编译的指令,均基于 Ubuntu 22.04 LTS 系统编写。 使用 OP-TEE 构建环境 此方法至少需要以下工具和库。下面描述的手动构建方法也需要大部分这些工具。…

滑动窗口最大值(力扣239)

刚拿到这道题&#xff0c;我们第一反应就是遍历每一个滑动窗口&#xff0c;然后在滑动窗口中遍历找到该窗口的最大值,但是这样的时间复杂度为O(k*n).有没有更简单的方法呢&#xff1f;答案是使用队列。更准确的说是双向队列。下面我将详细讲解一下如何使用双向队列解决这道问题…

一个面向领域的直播平台开源!

面向教育等领域&#xff0c;二开后可以做视频会议等 在线直播平台 基于 Spring Boot 和 SRS 平台功能 视频直播 在线聊天 直播提醒 作业上传和批改 项目介绍了一个基于Spring Boot和SRS的在线直播平台&#xff0c;这个平台具备视频直播、在线聊天、直播提醒以及…

智能风控 数据分析 groupby、apply、reset_index组合拳

目录 groupby——分组 本例 apply——对每个分组应用一个函数 等价用法 reset_index——重置索引 使用前​编辑 注意事项 groupby必须配合聚合函数、 关于agglist 一些groupby试验 1. groupby对象之后。sum&#xff08;一个列名&#xff09; 2. groupby对象…

Python Pyside6 加Sqlite3 写一个 通用 进销存 系统 初型

图: 说明: 进销存管理系统说明文档 功能模块 1. 首页 显示关键业务数据商品总数供应商总数本月采购金额本月销售金额显示预警信息库存不足预警待付款采购单待收款销售单2. 商品管理 商品信息维护商品编码(唯一标识)商品名称规格型号单位分类进货价销售价库存数量预警…

用 Java 发送 HTML 内容并带附件的电子邮件

实现思路 首先&#xff0c;设置邮件服务器的相关属性&#xff0c;包括是否需要认证、使用的邮件协议、服务器地址、端口等。 创建一个会话对象&#xff0c;使用 Session.getInstance 方法&#xff0c;并提供邮件服务器的属性和认证信息。 创建一个 MimeMessage 对象作为邮件消…

爬取NBA球员信息并可视化小白入门

网址:虎扑体育-NBA球员得分数据排行 第1页 步骤: 分析页面 确定URL地址模拟浏览器向服务器发送请求数据解析 提取想要的数据保存数据 爬虫所需要的模块 requests(发送HTTP请求)parsel(解析HTML内容)pandas(数据保存模块) 第一步分析页面 --确定是静态页面还是动态页面 右击点…

小白误入(需要一定的vue基础 )使用node建立服务器——vue前端登录注册页面连接到数据库

第一步&#xff1a;首先明确需要编写的文件&#xff1a; vue前端的登录页面&#xff1a;login.vue vue前端的注册页面&#xff1a;sign.vue vue前端的路由页面&#xff0c;负责vue框架内页面的跳转&#xff1a;index.js node后端连接数据&#xff0c;建立请求文件 &#xf…