【机器学习】—Transformers的扩展应用:从NLP到多领域突破

news/2024/12/5 6:47:14/

好久不见!喜欢就关注吧~

云边有个稻草人-CSDN博客

目录

引言

一、Transformer架构解析

(一)、核心组件

(二)、架构图

二、领域扩展:从NLP到更多场景

1. 自然语言处理(NLP)

2. 计算机视觉(Vision Transformers, ViT)

3. 时间序列分析

4. 多模态学习

三、Transformer扩展中的挑战与未来

(一)、挑战

1. 计算复杂性

2. 数据需求

3. 可解释性

(二)、未来趋势

(彩蛋 )                    ————————《初雪》————————


引言

自从Google在2017年提出Transformer架构以来(论文《Attention is All You Need》),这一模型在NLP(自然语言处理)中引发了革命。从BERT到GPT,Transformer的性能在文本生成、分类、翻译等任务中大幅领先传统方法。然而,随着研究的深入,Transformer不再局限于NLP,它在计算机视觉(CV)、时间序列分析、多模态学习等领域的表现同样令人瞩目。

在本篇文章中,我们将深入探讨Transformers的原理、扩展应用以及实现示例。通过4500字的内容,帮助你全面了解这一强大架构如何跨越领域界限,并在多个行业场景中大放异彩。

一、Transformer架构解析

(一)、核心组件

Transformer以自注意力机制(Self-Attention)为核心,消除了传统RNN和LSTM模型的顺序依赖问题,能够高效捕获全局信息。以下是Transformer的主要模块:

1.自注意力机制(Self-Attention)
通过查询(Query)、键(Key)和值(Value)矩阵,计算序列中不同位置的相关性。

2.多头注意力(Multi-Head Attention)
多头注意力在不同子空间中捕获信息,通过并行的方式提升表示能力。

3.位置编码(Positional Encoding)
为弥补序列信息的丢失,位置编码为每个输入Token注入位置信息。

4.前馈神经网络(Feed-Forward Network)
每个编码层中还包括一个简单的全连接网络,用于逐点映射特征。

(二)、架构图

Transformer由堆叠的编码器(Encoder)和解码器(Decoder)组成,编码器提取特征,解码器生成目标序列。

二、领域扩展:从NLP到更多场景

1. 自然语言处理(NLP)

NLP是Transformer的起点,经典应用包括:

  • 文本分类(例如情感分析)
  • 机器翻译(例如Google Translate)
  • 文本生成(例如ChatGPT)

示例代码:文本分类

以下示例使用Hugging Face库对文本进行情感分类:

from transformers import BertTokenizer, BertForSequenceClassification
import torch# 加载预训练的BERT模型和分词器
model_name = "bert-base-uncased"
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)# 样本数据
texts = ["I love programming.", "I hate bugs."]
labels = torch.tensor([1, 0])  # 1表示正面情感,0表示负面情感# 数据处理
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
outputs = model(**inputs, labels=labels)# 获取损失和预测结果
loss = outputs.loss
logits = outputs.logits
print(f"Loss: {loss.item()}, Predictions: {torch.argmax(logits, dim=1)}")

2. 计算机视觉(Vision Transformers, ViT)

在计算机视觉中,传统卷积神经网络(CNN)长期占据主导地位,但Transformer凭借其全局特性逐渐展现优势。Vision Transformer(ViT)是其中的代表模型。

核心思想

  • 将图像分割为固定大小的Patch,每个Patch类似于NLP中的Token。
  • 为每个Patch添加位置编码。
  • 利用Transformer处理这些Patch序列。

示例代码:ViT图像分类

以下是使用预训练ViT模型进行图像分类的示例:

from transformers import ViTForImageClassification, ViTFeatureExtractor
from PIL import Image
import torch# 加载模型和特征提取器
model_name = "google/vit-base-patch16-224"
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
model = ViTForImageClassification.from_pretrained(model_name)# 加载并预处理图像
image = Image.open("path/to/image.jpg").convert("RGB")
inputs = feature_extractor(images=image, return_tensors="pt")# 前向传播
outputs = model(**inputs)
logits = outputs.logits
predicted_class = logits.argmax(-1).item()print(f"Predicted class: {predicted_class}")

3. 时间序列分析

时间序列数据(如金融数据、传感器数据)往往具有长时间依赖性。传统方法(如LSTM)难以建模长距离依赖,而Transformer的全局注意力机制非常适合这一任务。

应用场景

  • 股票价格预测
  • 能源消耗预测
  • 医疗监测数据分析

示例代码:时间序列预测

以下实现了一个基于Transformer的时间序列模型:

import torch
from torch import nnclass TimeSeriesTransformer(nn.Module):def __init__(self, input_dim, hidden_dim, nhead, num_layers):super(TimeSeriesTransformer, self).__init__()self.encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=nhead)self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)self.fc = nn.Linear(hidden_dim, 1)def forward(self, src):out = self.transformer_encoder(src)out = self.fc(out[-1])  # 取最后一个时间步的输出return out# 模拟输入数据
src = torch.rand(10, 32, 64)  # [时间步, 批量大小, 特征维度]
model = TimeSeriesTransformer(input_dim=64, hidden_dim=64, nhead=8, num_layers=3)# 预测
output = model(src)
print(output.shape)  # 输出: [批量大小, 1]

4. 多模态学习

多模态学习旨在将不同模态(如文本、图像、音频)结合处理,跨模态任务正在成为研究热点。CLIP(Contrastive Language-Image Pretraining)是一个标志性模型。

CLIP关键点

  • 将图像和文本映射到同一嵌入空间。
  • 通过对比学习优化,使相关图像和文本的嵌入更接近。

示例代码:CLIP跨模态匹配

from transformers import CLIPProcessor, CLIPModel
from PIL import Image# 加载模型和处理器
model_name = "openai/clip-vit-base-patch32"
processor = CLIPProcessor.from_pretrained(model_name)
model = CLIPModel.from_pretrained(model_name)# 图像和文本输入
image = Image.open("path/to/image.jpg")
texts = ["A photo of a cat", "A photo of a dog"]# 数据预处理
inputs = processor(text=texts, images=image, return_tensors="pt", padding=True)# 前向传播
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=-1)print(f"Matching probabilities: {probs}")

三、Transformer扩展中的挑战与未来

(一)、挑战

1. 计算复杂性

Transformer在处理长序列时计算复杂度为 O(n2)O(n^2)O(n2)。如能优化稀疏注意力,将有效缓解这一问题。

2. 数据需求

许多领域缺乏大规模标注数据,可通过迁移学习、自监督学习等方式缓解。

3. 可解释性

Transformer是“黑箱”模型,亟需提高其透明性,尤其在关键领域如医疗和金融。

(二)、未来趋势

  1. 高效Transformer

    • 稀疏注意力(Sparse Attention)
    • 低秩分解(Low-Rank Decomposition)
  2. 自监督学习
    通过挖掘未标注数据的潜力,如SimCLR、MAE。

  3. 跨领域融合
    将Transformer与领域知识相结合,如生物信息学、物理学。

完——


放松一下吧~~~

(彩蛋 )                    ————————《初雪》————————

첫 눈_EXO_高音质在线试听_첫 눈歌词|歌曲下载_酷狗音乐

我是云边有个稻草人

期待与你的下一次相遇!


http://www.ppmy.cn/news/1552484.html

相关文章

深入探讨Go语言中的双向链表

简介 双向链表是链表家族中的一种高级结构,每个节点不仅指向下一个节点,还指向上一个节点。今天,我们将学习如何在Go语言中实现和操作这种灵活的数据结构。 双向链表的优缺点 优点: 可以从任一方向遍历链表,灵活性高…

【Linux篇】权限管理 - 用户与组权限详解

一. 什么是权限? 首先权限是限制人的。人 真实的人 身份角色 权限 角色 事物属性 二. 认识人–用户 Linux下的用户分为超级用户和普通用户 root :超级管理员,几乎不受权限的约束普通用户 :受权限的约束超级用户的命令提示符是#,普通用…

AUTOSAR AP 汽车API知识点总结(Automotive API )R24-11

汽车API知识点总结 一、背景与目标 背景:智能互联汽车正逐步依赖远程诊断、软件更新等功能以确保行驶安全,并且用户已习惯于通过智能设备中的应用程序控制连接设备。虽然AUTOSAR标准支持车辆软件的可更新性,但尚未提供将AUTOSAR应用产生的数据和功能安全可靠地暴露给非AUTO…

Milvus python库 pymilvus 常用操作详解之Collection(下)

上篇博客 Milvus python库 pymilvus 常用操作详解之Collection(上) 主要介绍了 pymilvus 库中Collection集合的相关概念以及创建过程的代码实现,现在我们要在该基础上实现对于collection中插入数据的混合检索(基于dense vector 和…

电子病历静态数据脱敏路径探索

一、引言 数据脱敏(Data Masking),屏蔽敏感数据,对某些敏感信息(比如patient_name、ip_no、ad、no、icd11、drug等等 )通过脱敏规则进行数据的变形,实现隐私数据的可靠保护。电子病历作为医疗领…

Vue 将推出「无虚拟DOM」版本,又是新的前端框架趋势?

背景 随着 React 和 Vue 这些前端框架的爆火,他们的渲染方式,虚拟DOM,也跟着火了起来,大家都认为这是一种高性能批量更新DOM的方式 但是近一两年有不同的声音,觉得虚拟DOM反而是渲染性能的累赘,所以也出了一…

微信创建小程序码 - 数量不受限制

获取小程序码:小程序码为圆图,且不受数量限制。 目录 文档 接口地址 请求方式 功能描述 注意事项 获取 scene 值 请求参数 返回参数 对接 请求方法 获取小程序码 调用获取小程序码 总结 文档 接口地址 https://api.weixin.qq.com/wxa/get…

借助 AI 工具,共享旅游-卡-项目助力年底增收攻略

年底了,大量的商家都在开始筹备搞活动,接下来的双十二、元旦、春节、开门红、寒假,各种活动,目的就是为了拉动新客户。 距离过年还有56 天,如何破局? 1、销售渠道 针对旅游卡项目,主要销售渠道…