Pytorch学习--神经网络--现有网络模型的使用及修改

news/2024/11/7 12:28:16/

一、VGG16

在这里插入图片描述

  • weights (Optional[VGG16_Weights]):
    • 这个参数是可选的,指的是预训练的权重。用户可以选择使用不同的预训练权重,具体可参见 VGG16_Weights 的详细说明。
    • 默认情况下,如果不提供此参数,模型将不会使用任何预训练权重。
  • progress (bool):
    • 这个参数也是可选的,默认为 True。它用于控制在下载模型权重时是否显示进度条。如果设置为 True,则在下载过程中会在标准错误输出中显示下载进度的条形图;如果为 False,则不会显示进度条。
      在这里插入图片描述
  • weights 参数的使用:
    • 在调用 torchvision.models.vgg16 时,可以通过 weights 参数来指定预训练权重的版本。文档中提到 VGG16_Weights.DEFAULT 等同于 VGG16_Weights.IMAGENET1K_V1。
    • 用户可以直接使用字符串,例如 weights=‘DEFAULT’ 或 weights=‘IMAGENET1K_V1’,来设置权重。
  • VGG16_Weights.IMAGENET1K_V1:
    这个权重版本是基于 ImageNet-1K 数据集从头训练而来的,采用了一种简化的训练策略。它也可以通过 VGG16_Weights.DEFAULT 访问。
import torchvisionVGG16_pretrained_true = torchvision.models.vgg16(weights='DEFAULT')
VGG16_pretrained_false = torchvision.models.vgg16(weights=None)
print("ok")  #在此处打断点

注意weight的变化:

  • VGG16_pretrained_false:
    在这里插入图片描述
  • VGG16_pretrained_true:
    在这里插入图片描述

二、修改网络模型的实例代码

import torchvision
from torch import nnVGG16_pretrained_true = torchvision.models.vgg16(weights='DEFAULT')
VGG16_pretrained_false = torchvision.models.vgg16(weights=None)#以VGG16_pretrained_true为基础,添加层
print(VGG16_pretrained_true)
print("*********************************************************")
VGG16_pretrained_true.classifier.add_module("7",nn.Linear(1000,10))
print(VGG16_pretrained_true)
print("*********************************************************")#以VGG16_pretrained_false为基础,修改层
print(VGG16_pretrained_false)
print("*********************************************************")
VGG16_pretrained_false.classifier[6] = nn.Linear(1000,10)
print(VGG16_pretrained_false)
print("*********************************************************")

输出:

VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace=True)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace=True)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace=True)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True)(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace=True)(2): Dropout(p=0.5, inplace=False)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace=True)(5): Dropout(p=0.5, inplace=False)(6): Linear(in_features=4096, out_features=1000, bias=True))
)
*********************************************************
VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace=True)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace=True)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace=True)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True)(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace=True)(2): Dropout(p=0.5, inplace=False)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace=True)(5): Dropout(p=0.5, inplace=False)(6): Linear(in_features=4096, out_features=1000, bias=True)(7): Linear(in_features=1000, out_features=10, bias=True))
)
*********************************************************
VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace=True)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace=True)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace=True)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True)(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace=True)(2): Dropout(p=0.5, inplace=False)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace=True)(5): Dropout(p=0.5, inplace=False)(6): Linear(in_features=4096, out_features=1000, bias=True))
)
*********************************************************
VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace=True)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace=True)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace=True)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True)(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace=True)(2): Dropout(p=0.5, inplace=False)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace=True)(5): Dropout(p=0.5, inplace=False)(6): Linear(in_features=1000, out_features=10, bias=True))
)
*********************************************************

http://www.ppmy.cn/news/1545054.html

相关文章

Java学习路线:Maven(二)scope、optional和exclusions

目录 scope optional exclusions 我们知道,一般来说一个依赖由三个基本的属性作为定位坐标,即groupId、artifactId和version 除了这三个基本属性以外,依赖还可以添加其他的属性,例如scope、optional和exclusions等 这篇文章将…

轻量级Nacos来了!占用资源极低,性能炸裂!

Nacos作为一款非常流行的微服务注册中心,我们在构建微服务项目时往往会使用到它。最近发现一款轻量级的Nacos项目r-nacos,占用内存极低,性能也很强大,分享给大家。本文就以我的mall-swarm微服务电商实战项目为例,来聊聊…

Docker篇(registry私服)

目录 一、私有仓库搭建与配置 1. 拉取私有仓库镜像(此步省略) 2. 启动私有仓库容器 3. 打开浏览器访问 4. 修改daemon.json 5. 重启docker 服务 二、镜像上传至私有仓库 1. 标记此镜像为私有仓库的镜像 2. 再次启动私服容器 3. 上传标记的镜像 …

必应国内广告开户代理商,推广怎么收费?

2024年,必应国内广告凭借其独特的优势,已经成为众多企业拓展市场、提升品牌影响力的重要渠道。 一、必应国内广告费用说明 1、必应开户费用:通常情况下,必应国内广告推广需要媒体预充值5000元,开户服务费用为 2000 元…

微信小程序 基于协同过滤算法的的校园音乐推荐系统

文章目录 项目介绍具体实现截图技术介绍mvc设计模式小程序框架以及目录结构介绍错误处理和异常处理java类核心代码部分展示详细视频演示源码获取 项目介绍 校园音乐推荐系统设计的目的在于帮助学校的管理者能够更加高效轻松地进行日常的管理工作,所以作为一个工具&…

第一章 Linux安装 -- 安装Debian 12操作系统(四)

文章目录 2.3.4 安装Debian 12操作系统 2.3.4 安装Debian 12操作系统 虚拟机的创建参照前面2.3.1.3节里的步骤创建,这里不再详述。 下面就开始安装Debian 12系统了,单击“开启此虚拟机”,如图1-161虚拟机主界面。 图1-161 虚拟机主界面 弹…

微服务架构面试内容整理-Hystrix

Hystrix 是由 Netflix 开发的一个用于处理分布式系统中的延迟和故障的库,主要用于实现熔断器模式。它帮助开发者确保系统的稳定性和可用性,防止单个服务的故障影响整个系统。以下是 Hystrix 的主要特点、工作原理和使用场景: 主要特点 1. 熔断器模式: 通过监控服务调用的成…

产品经理笔记

1.3 合格的产品经理 P3 - 00:40 产品基础: 产品共性:解决问题区别:有形与无形产品经理定义: 想设计、做开发、卖推广想清楚产品怎么做的人合格的产品经理: 问题:谁 什么情况下 什么事用户 场景 …