-
计算
- 求极限 lim n → ∞ ( 1 n 2 + 1 2 + 1 n 2 + 2 2 + ⋯ + 1 n 2 + n 2 ) \mathop{\lim }\limits_{n \to \infty } \left( \frac{1}{{\sqrt {n^2 + 1^2} }} + \frac{1}{{\sqrt {n^2 + 2^2} }} + \cdots + \frac{1}{{\sqrt {n^2 + n^2} }} \right) n→∞lim(n2+121+n2+221+⋯+n2+n21)。
- 求极限 lim x → 0 cos x − e − x 2 2 x 2 tan 2 x \mathop{\lim }\limits_{x \to 0} \frac{\cos x - e^{ - \frac{x^2}{2}}}{x^2 \tan^2 x} x→0limx2tan2xcosx−e−2x2。
- 设 f ( x ) = ∫ 1 x e − t 2 d t f(x) = \int_1^x e^{-t^2} \, \mathrm{d}t f(x)=∫1xe−t2dt,求 ∫ 0 1 x 2 f ( x ) d x \int_0^1 x^2 f(x) \, \mathrm{d}x ∫01x2f(x)dx。
- 设 u = x 2 + y 2 + z 2 u = x^2 + y^2 + z^2 u=x2+y2+z2, z = f ( x , y ) z = f(x,y) z=f(x,y) 且 x 2 + y 2 + z 2 = 3 x y z x^2 + y^2 + z^2 = 3xyz x2+y2+z2=3xyz,考虑使用隐函数,求 u x x u_{xx} uxx。
解答 1:
lim n → ∞ ( 1 n 2 + 1 2 + 1 n 2 + 2 2 + ⋯ + 1 n 2 + n 2 ) = lim n → ∞ 1 n ∑ k = 1 n 1 1 + ( k n ) 2 = ∫ 0 1 1 1 + x 2 d x = ∫ 0 π 4 sec t ( sec t + tan t ) sec t + tan t d t = ln ∣ sec t + tan t ∣ ∣ 0 π 4 = ln ( 2 + 1 ) \begin{align*} \mathop{\lim }\limits_{n \to \infty } \left( \frac{1}{{\sqrt{n^2 + 1^2}}} + \frac{1}{{\sqrt{n^2 + 2^2}}} + \cdots + \frac{1}{{\sqrt{n^2 + n^2}}} \right) &= \mathop{\lim }\limits_{n \to \infty } \frac{1}{n} \sum_{k = 1}^n \frac{1}{{\sqrt{1 + \left(\frac{k}{n}\right)^2}}} \\ &= \int_0^1 \frac{1}{{\sqrt{1 + x^2}}} \, \mathrm{d}x \\ &= \int_0^{\frac{\pi }{4}} \frac{\sec t \left(\sec t + \tan t\right)}{\sec t + \tan t} \, \mathrm{d}t \\ &= \ln \left| \sec t + \tan t \right| \bigg|_0^{\frac{\pi }{4}} \\ &= \ln \left( \sqrt{2} + 1 \right) \end{align*} n→∞lim(n2+121+n2+221+⋯+n2+n21)=n→∞limn1k=1∑n1+(nk)21=∫011+x21dx=∫04πsect+tantsect(sect+tant)dt=ln∣sect+tant∣ 04π=ln(2+1)
解答 2:
lim x → 0 cos x − e − x 2 2 x 2 tan 2 x = lim x → 0 cos x − e − x 2 2 x 4 = lim x → 0 ( 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) ) − ( 1 − x 2 2 + ( − x 2 2 ) 2 2 ! + o ( x 4 ) ) x 4 = lim x → 0 1 6 x 4 + o ( x 4 ) x 4 = 1 6 \begin{align*} \mathop{\lim }\limits_{x \to 0} \frac{\cos x - e^{ - \frac{x^2}{2}}}{x^2 \tan^2 x} &= \mathop{\lim }\limits_{x \to 0} \frac{\cos x - e^{ - \frac{x^2}{2}}}{x^4} \\ &= \mathop{\lim }\limits_{x \to 0} \frac{\left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)\right) - \left(1 - \frac{x^2}{2} + \frac{\left(- \frac{x^2}{2}\right)^2}{2!} + o(x^4)\right)}{x^4} \\ &= \mathop{\lim }\limits_{x \to 0} \frac{\frac{1}{6} x^4 + o(x^4)}{x^4} \\ &= \frac{1}{6} \\ \end{align*} x→0limx2tan2xcosx−e−2x2=x→0limx4cosx−e−2x2=x→0limx4(1−2!x2+4!x4+o(x4))−(1−2x2+2!(−2x2)2+o(x4))=x→0limx461x4+o(x4)=61
解答 3:
∫ 0 1 d x ∫ 1 x x 2 e − t 2 d t = − ∫ 0 1 d t ∫ 0 t x 2 e − t 2 d x = − ∫ 0 1 t 3 3 e − t 2 d t = − 1 6 ∫ 0 1 t 2 e − t 2 d ( t 2 ) = 1 6 ( t 2 e − t 2 + e − t 2 ) ∣ 0 1 = 1 3 e − 1 − 1 6 \begin{align*} \int_0^1 \mathrm{d}x \int_1^x x^2 e^{-t^2} \, \mathrm{d}t &= - \int_0^1 \mathrm{d}t \int_0^t x^2 e^{-t^2} \, \mathrm{d}x \\ &= - \int_0^1 \frac{t^3}{3} e^{-t^2} \, \mathrm{d}t \\ &= - \frac{1}{6} \int_0^1 t^2 e^{-t^2} \, \mathrm{d}(t^2) \\ &= \frac{1}{6} \left( t^2 e^{-t^2} + e^{-t^2} \right) \bigg|_0^1 \\ &= \frac{1}{3} e^{-1} - \frac{1}{6} \\ \end{align*} ∫01dx∫1xx2e−t2dt=−∫01dt∫0tx2e−t2dx=−∫013t3e−t2dt=−61∫01t2e−t2d(t2)=61(t2e−t2+e−t2) 01=31e−1−61
解答 4:
u x = 2 x + 2 z z x = 3 y z + 3 x y z x u_x = 2x + 2z z_x = 3yz + 3xy z_x ux=2x+2zzx=3yz+3xyzx
得到:
z x = 2 x − 3 y z 3 x y − 2 z z_x = \frac{2x - 3yz}{3xy - 2z} zx=3xy−2z2x−3yz
z x x = 2 + 2 z x 2 − 6 y z x 3 x y − 2 z = 1 ( 3 x y − 2 z ) 3 [ 2 ( 9 x 2 y 2 − 12 x y z + 4 z 2 ) + 2 ( 4 x 2 − 12 x y z + 9 y 2 z 2 ) − 6 ( 6 x 2 y 2 − 4 x z y − 9 x y 3 z + 6 y 2 z 2 ) ] = 1 ( 3 x y − 2 z ) 3 [ − 18 x 2 y 2 − 24 x y z + 8 z 2 + 8 x 2 − 18 y 2 z 2 + 54 x y 3 z ] \begin{align*} z_{xx} &= \frac{2 + 2 z_x^2 - 6y z_x}{3xy - 2z} \\ &= \frac{1}{\left(3xy - 2z\right)^3} \left [2\left(9x^2 y^2 - 12xyz + 4z^2\right) + 2\left(4x^2 - 12xyz + 9y^2 z^2\right) - 6\left(6x^2 y^2 - 4xzy - 9x y^3 z + 6y^2 z^2\right)\right] \\ &= \frac{1}{\left(3xy - 2z\right)^3} \left [-18x^2 y^2 - 24xyz + 8z^2 + 8x^2 - 18y^2 z^2 + 54x y^3 z\right] \end{align*} zxx=3xy−2z2+2zx2−6yzx=(3xy−2z)31[2(9x2y2−12xyz+4z2)+2(4x2−12xyz+9y2z