线性回归逻辑回归-笔记

news/2024/12/21 22:44:10/

一、线性回归(Linear Regression)

1. 定义

线性回归是一种用于回归问题的算法,旨在找到输入特征与输出值之间的线性关系。它试图通过拟合一条直线来最小化预测值与真实值之间的误差。

2. 模型表示

线性回归模型假设目标变量(输出)和输入变量(特征)之间的关系是线性的,模型可以表示为:

其中:

  • y是目标变量(预测值)。
  • x1​,x2​,…,xn​ 是输入特征。
  • β0​ 是偏置项(截距)。
  • β1,β2,…,βn​ 是特征的系数(权重)。
  • ϵ是误差项。

3. 损失函数

线性回归的目标是最小化均方误差(Mean Squared Error, MSE),其损失函数定义为:

其中,yi 是真实值,y^i是模型预测值。

4. 解决方法

通过**最小二乘法(Ordinary Least Squares, OLS)**或梯度下降等方法,求解模型中的参数(权重和偏置项)。

二、逻辑回归(Logistic Regression)

1. 定义

逻辑回归是一种用于分类问题的算法,尽管名字中有“回归”一词,它本质上是一种分类算法,特别适用于二分类问题(如0/1、是/否、真/假等)。它通过估计事件发生的概率来进行分类。

2. 模型表示

逻辑回归的模型形式与线性回归类似,但它的输出是一个概率值,通过将线性回归结果输入到Sigmoid函数中,得到的值在0到1之间:

 其中,P(y=1∣x)P(y=1 | x)P(y=1∣x) 是类别为1的概率。

  • Sigmoid函数定义为:

 Sigmoid函数将线性回归的结果(可能为任意实数)映射到0和1之间,便于表示概率。

3. 损失函数

逻辑回归使用交叉熵损失(Cross-Entropy Loss),其损失函数为:

 其中:

  • yi是真实的标签(0或1)。
  • y^i是模型的预测概率。

4. 解决方法

逻辑回归的参数可以通过梯度下降等优化算法来求解。

三、线性回归与逻辑回归的区别 

特征线性回归(Linear Regression)逻辑回归(Logistic Regression)
类型回归算法(用于预测连续值)分类算法(用于预测类别)
目标变量连续型变量(如价格、温度等)二分类变量(0/1, 是/否等)
模型输出实数(可能在正无穷到负无穷之间)概率(0到1之间)
使用的函数线性函数Sigmoid函数
损失函数均方误差(MSE)交叉熵损失(Cross-Entropy)
应用场景回归问题,如房价预测、销量预测等分类问题,如信用违约预测、疾病诊断
解决方法最小二乘法或梯度下降梯度下降等优化方法
输出解释直接预测一个值预测某个事件发生的概率
特征之间的关系假设特征与目标值之间存在线性关系假设特征与分类概率之间有线性关系

主要区别总结

  1. 问题类型:线性回归用于解决回归问题,预测连续变量,而逻辑回归用于解决分类问题,通常是二分类问题。
  2. 输出值:线性回归的输出是一个实数,可能范围从负无穷到正无穷;逻辑回归的输出是一个0到1之间的概率值。
  3. 模型函数:线性回归直接使用线性函数进行预测,而逻辑回归将线性回归的结果通过Sigmoid函数转化为概率。
  4. 损失函数:线性回归使用均方误差(MSE)作为损失函数,而逻辑回归使用交叉熵损失(Cross-Entropy)。

 四、具体实践:Python代码示例

线性回归

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_boston
from sklearn.metrics import mean_squared_error# 加载数据
boston = load_boston()
X = boston.data
y = boston.target# 分割数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 训练模型
model = LinearRegression()
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse:.2f}')

 逻辑回归

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
from sklearn.metrics import accuracy_score# 加载数据
cancer = load_breast_cancer()
X = cancer.data
y = cancer.target# 分割数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 训练模型
model = LogisticRegression(max_iter=10000)
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')


http://www.ppmy.cn/news/1536974.html

相关文章

红灯-绿灯-重构

代码在周期内的状态:处于红灯状态时,代码不管用,处于绿灯状态时,一切都想预期的那样工作,但并不一定是最佳的,到了重构阶段,我们知道测试很好的覆盖了各项功能,可以充满信息地修改他…

Mysql 索引底层数据结构和算法

目录 索引数据结构 Hash表 二叉树 红黑树 B树 B树 索引数据结构 索引(index)是帮助MySQL高效获取数据的一种有序数据结构。索引是存储到表空间中,当我们的 sql 中的where条件用到索引的时候,会在存储引擎层就过滤出数据来…

Redis:cpp.redis++通用接口

Redis:cpp.redis通用接口 redis对象通用接口set & getexistsdelflushallkeysttlexpiretype 本博客讲解redis的C客户端redis-plus-plus,这个版本的客户端,接口和redis原生命令几乎完全一致,博客内部不会详细讲解每个接口的具体…

如何用深度神经网络预测潜在消费者

1. 模型架构 本项目采用的是DeepFM模型,其结构结合了FM(因子分解机)与深度神经网络(DNN),实现了低阶与高阶特征交互的有效建模。模型分为以下几层: 1.1 FM部分(因子分解机层&#…

C#系统学习路线

分享一个C#程序员的成长学习路线规划,希望能够帮助到想从事C#开发的你。 我一直在想,初学者刚开始学习编程时应该学些什么?学习到什么程度才能找到工作?才能在项目中发现和解决Bug? 我不知道每位初学者在学习编程时是…

SpringBoot 整合 阿里云 OSS图片上传

一、OOS 简介 ‌阿里云OSS(Object Storage Service)是一种基于云存储的产品,适用于存储和管理各种类型的文件,包括图片、视频、文档等。‌ 阿里云OSS具有高可靠性、高可用性和低成本等优点,因此被广泛应用于各种场景&…

快速区分 GPT-3.5 与 GPT-4

问:鲁迅为什么暴打周树人? GPT3.5回答 各种稀奇古怪的理由 GPT4回答 正确区分鲁迅和周树人是同一个人 国内GPT入口 https://ai-to.cn/url/?ulihaimao

vue3实现登录获取token并自动刷新token进行JWT认证

在《django应用JWT(JSON Web Token)实战》介绍了如何通过django实现JWT,并以一个具体API接口实例的调用来说明JWT如何使用。本文介绍如何通过vue3的前端应用来使用JWT认证调用后端的API接口,实现一下的登录认证获取JWT进行接口认证。 一、账号密码登录获…