java集合 -- 面试

news/2024/12/22 9:53:07/

Java集合框架体系

  • ArrayList底层实现是数组

  • LinkedList底层实现是双向链表

  • HashMap的底层实现使用了众多数据结构,包含了数组、链表、散列表、红黑树等

List

ps :

  • 数据结构 -- 数组

  • ArrayList源码分析

  • ArrayList底层的实现原理是什么?

  • ArrayList list = new ArrayList(10)中的list扩容几次

  • 如何实现数组和List之间的转换

  • ArrayList 和 LinkedList 的区别是什么?

1 . 数组

数组(Array)是一种用连续的内存空间存储相同数据类型的线性数据结构 ;

为什么数组索引从0开始?加入从1开始不行吗?

2 . 源码分析

基于jdk1.8来分析 ;

打开源码 :

成员变量

    private static final int DEFAULT_CAPACITY = 10;
​private static final Object[] EMPTY_ELEMENTDATA = {};
​
​private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
​
​transient Object[] elementData; 
​
​private int size;
  • elementData : 存储数据的数组

  • size : ArrayList大小(包含元素数量)

  • DEFAULT_CAPACITY : 默认的初始容量

  • EMPTY_ELEMENTDATA : 用于空实例的共享空数组实例

  • DEFAULTCAPACITY_EMPTY_ELEMENTDATA : 用于默认大小的空实例的动向空数组实例

构造函数

1 . 带初始化容量的构造函数
    /*** Constructs an empty list with the specified initial capacity.** @param  initialCapacity  the initial capacity of the list* @throws IllegalArgumentException if the specified initial capacity*         is negative*/public ArrayList(int initialCapacity) {if (initialCapacity > 0) {// 初始容量大于0this.elementData = new Object[initialCapacity];} else if (initialCapacity == 0) {// 初始容量等于0this.elementData = EMPTY_ELEMENTDATA;} else {// <0 : 抛出异常throw new IllegalArgumentException("Illegal Capacity: "+initialCapacity);}}
2. 无参构造函数
    /*** Constructs an empty list with an initial capacity of ten.*/public ArrayList() {this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;}
  • 无参构造函数,默认创建空集合 ;

3 . 将collection对象转换为数组,然后将数组的地址赋给elementData
    /*** Constructs a list containing the elements of the specified* collection, in the order they are returned by the collection's* iterator.** @param c the collection whose elements are to be placed into this list* @throws NullPointerException if the specified collection is null*/public ArrayList(Collection<? extends E> c) {Object[] a = c.toArray();// 转换为数组if ((size = a.length) != 0) {if (c.getClass() == ArrayList.class) {elementData = a;} else {elementData = Arrays.copyOf(a, size, Object[].class);}} else {// replace with empty array.elementData = EMPTY_ELEMENTDATA;}}

添加和扩容操作

1 . 添加第一个元素
List<Integer> list = new ArrayList<Integer>() ;
list.add(1) ;

添加数据 :

public boolean add(E e){ensureCapacityInternal(size+1) ;elements[size++] = e ;reture true;
}

确保内部容量 :

public void ensureCapacityInternal(int minCapacity){ensureExplicitCapacity(calcuteCapacity(elementData,minCapacity));
}
2 . 添加第二个到第十个数据
        for(int i=2;i<=10;i++){list.add(i) ;}
3 . 添加第十一条数据
list.add(11) ;

需要扩容 :

3.ArrayList底层的实现原理是什么?

  • 底层数据结构

ArrayList底层是用动态的数组实现的

  • 初始容量

ArrayList初始容量为0,当第一次添加数据的时候才会初始化容量为10

  • 扩容逻辑

ArrayList在进行扩容的时候是原来容量的1.5倍,每次扩容都需要拷贝数组

  • 添加逻辑

    • 确保数组已使用长度(size)加1之后足够存下下一个数据

    • 计算数组的容量,如果当前数组已使用长度+1后的大于当前的数组长度,则调用grow方法扩容(原来的1.5倍)

    • 确保新增的数据有地方存储之后,则将新元素添加到位于size的位置上。

    • 返回添加成功布尔值。

4.ArrayList list=new ArrayList(10)中的list扩容几次

该语句只是声明和实例了一个 ArrayList,指定了容量为 10,未扩容

5.如何实现数组和List之间的转换

数组转List :

    // 数组转listpublic static List<Integer> arrayToList1(Integer[] arr){List<Integer> list = Arrays.asList(arr) ;return list ;}
​//  数组转Listpublic static List<String> arrayToList2(String[] arr){
//        String[] arr =  {"aa","bb","cc"} ;List<String> list = Arrays.asList(arr) ;return list ;}

List转数组 :

    // List转数组public static void listToArray(){List<String> list = new ArrayList<>() ;list.add("aa") ;list.add("bb") ;list.add("cc") ;String[] array = list.toArray(new String[list.size()]) ;for(String s : array){System.out.println(s);}}

总结 :

  • 数组转List ,使用JDK中java.util.Arrays工具类的asList方法

  • List转数组,使用List的toArray方法。无参toArray方法返回 Object数组,传入初始化长度的数组对象,返回该对象数组

面试官再问:

1,用Arrays.asList转List后,如果修改了数组内容,list受影响吗

2,List用toArray转数组后,如果修改了List内容,数组受影响吗

测试代码 :

    //  数组转Listpublic static void array2List(){String[] arr =  {"aa","bb","cc"} ;List<String> list = Arrays.asList(arr) ;for(String s : list){System.out.println(s);}arr[1] = "ddd" ;System.out.println("-------------");for(String s : list){System.out.println(s);}}
​// List转数组public static void listToArray(){List<String> list = new ArrayList<>() ;list.add("aa") ;list.add("bb") ;list.add("cc") ;String[] array = list.toArray(new String[list.size()]) ;for(String s : array){System.out.println(s);}list.add("abc") ;System.out.println("--------------");for(String s : array) {System.out.println(s);}}

数组转List : 受影响

分析asList()方法 :

在requireNonNull()中只进行判空处理,如果为空则抛出异常,否者,直接返回 :

所以只涉及到了对象的引用,并没有创建新的对象 , 两个指向同一个地址;

List转数组不受影响

toArray()方法 :

是采用复制的方式来进行转换 ;

总结 :

1,用Arrays.asList转List后,如果修改了数组内容,list受影响吗

Arrays.asList转换list之后,如果修改了数组的内容,list会受影响,因为它的底层使用的Arrays类中的一个内部类ArrayList来构造的集合,在这个集合的构造器中,把我们传入的这个集合进行了包装而已,最终指向的都是同一个内存地址

2,List用toArray转数组后,如果修改了List内容,数组受影响吗

list用了toArray转数组后,如果修改了list内容,数组不会影响,当调用了toArray以后,在底层是它是进行了数组的拷贝,跟原来的元素就没啥关系了,所以即使list修改了以后,数组也不受影响;

6.链表

单向链表 :

  • 链表中的每一个元素称之为结点(Node)

  • 物理存储单元上,非连续、非顺序的存储结构

  • 单向链表:每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。记录下个结点地址的指针叫作后继指针 next;

java代码实现 :

    private  static class Node<E>{E item;Node<E> next;
​public Node(E element, Node<E> next) {this.item = element;this.next = next;}}

7.ArrayList和LinkedList的区别是什么?

  • 底层数据结构

    • ArrayList 是动态数组的数据结构实现

    • LinkedList 是双向链表的数据结构实现

  • 操作数据效率

    • ArrayList按照下标查询的时间复杂度O(1)【内存是连续的,根据寻址公式】, LinkedList不支持下标查询

    • 查找(未知索引): ArrayList需要遍历,链表也需要链表,时间复杂度都是O(n)

    • 新增和删除

      • ArrayList尾部插入和删除,时间复杂度是O(1);其他部分增删需要挪动数组,时间复杂度是O(n)

      • LinkedList头尾节点增删时间复杂度是O(1),其他都需要遍历链表,时间复杂度是O(n)

  • 内存空间占用

    • ArrayList底层是数组,内存连续,节省内存

    • LinkedList 是双向链表需要存储数据,和两个指针,更占用内存

  • 线程安全

    • ArrayList和LinkedList都不是线程安全的

    • 如果需要保证线程安全,有两种方案:

      • 在方法内使用,局部变量则是线程安全的

      • 使用线程安全的ArrayList和LinkedList

HashMap

1.二叉树

概念

二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只有左子节点,有的节点只有右子节点。

可以通过数组和链表实现 ;

二叉搜索树

在二叉树中,比较常见的二叉树有:

  • 满二叉树

  • 完全二叉树

  • 二叉搜索树

  • 红黑树

(1)二叉搜索树概述

二叉搜索树(Binary Search Tree,BST)又名二叉查找树,有序二叉树或者排序二叉树,是二叉树中比较常用的一种类型

二叉查找树要求,在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值

(2)二叉搜索树-时间复杂度分析

实际上由于二叉查找树的形态各异,时间复杂度也不尽相同,我画了几棵树我们来看一下插入,查找,删除的时间复杂度

插入,查找,删除的时间复杂度O(logn)

极端情况下二叉搜索的时间复杂度

对于图中这种情况属于最坏的情况,二叉查找树已经退化成了链表,左右子树极度不平衡,此时查找的时间复杂度肯定是O(n)。

红黑树

(1)概述

红黑树(Red Black Tree):也是一种自平衡的二叉搜索树(BST),之前叫做平衡二叉B树(Symmetric Binary B-Tree),可以防止出现上面的情况 :

(2)红黑树的特质

性质1:节点要么是红色,要么是黑色

性质2:根节点是黑色

性质3:叶子节点都是黑色的空节点

性质4:红黑树中红色节点的子节点都是黑色

性质5:从任一节点到叶子节点的所有路径都包含相同数目的黑色节点

在添加或删除节点的时候,如果不符合这些性质会发生旋转,以达到所有的性质,保证红黑树的平衡

(3)红黑树的复杂度

  • 查找:

    • 红黑树也是一棵BST(二叉搜索树)树,查找操作的时间复杂度为:O(log n)

  • 添加:

    • 添加先要从根节点开始找到元素添加的位置,时间复杂度O(log n)

    • 添加完成后涉及到复杂度为O(1)的旋转调整操作

    • 故整体复杂度为:O(log n)

  • 删除:

    • 首先从根节点开始找到被删除元素的位置,时间复杂度O(log n)

    • 删除完成后涉及到复杂度为O(1)的旋转调整操作

    • 故整体复杂度为:O(log n) ;

2.Hash表

散列表(Hash Table)又名哈希表/Hash表,是根据键(Key)直接访问在内存存储位置值(Value)的数据结构,它是由数组演化而来的,利用了数组支持按照下标进行随机访问数据的特性

假设有100个人参加马拉松,不采用1-100的自然数对选手进行编号,编号有一定的规则比如:2023ZHBJ001,其中2023代表年份,ZH代表中国,BJ代表北京,001代表原来的编号,那此时的编号2023ZHBJ001不能直接作为数组的下标,此时应该如何实现呢?

我们目前是把选手的信息存入到数组中,不过选手的编号不能直接作为数组的下标,不过,可以把选手的选号进行转换,转换为数值就可以继续作为数组的下标了?

散列函数

转换可以使用散列函数进行转换 ;

  • 将键(key)映射为数组下标的函数叫做散列函数。可以表示为 : hasValue = hash(Key) ;

散列函数的要求 :

  • 得到的散列值>=0 ,作为数组下标

  • 如果key1==key2 , 那么经过hash之后得到的哈希值也必须相同 : hash(key1)=hash(key2) ;

散列冲突

概念 : 多个key映射到同一个数组下标位置

拉链法

1 . 插入

通过散列函数计算出对应的散列槽位,将其插入到对应的链表中即可,插入得到时间复杂度是O(1) ;

2 . 查找
  • 平均情况下基于链表法解决冲突时查询的时间复杂度时O(1)

  • 散列表可能退化成链表,查询的时间复杂度可能从O(1)退化到O(n) ;

  • 将链表法中的链表改成红黑树(或者其它高效的数据结构) ,查询的时间复杂度时O(logn),

改为红黑树 :

  • 将链表法中的链表改为红黑树还可以防止DDos攻击

DDos攻击 :

分布式拒绝服务攻击(Distributed Denial of Service,简称DDoS)

指处于不同位置的多个攻击者同时向一个或数个目标发动攻击,或者一个攻击者控制了位于不同位置的多台机器并利用这些机器对受害者同时实施攻击。由于攻击的发出点时分布在不同地方的,这类攻击成为分布式拒绝服务攻击,其中攻击者可以有多个 ;

3.hashmap实现原理

HashMap的数据结构 : 底层采用哈希表,即数组+链表+红黑树 ;

源码跟踪 :

1 . 当put元素的时候,利用key的hashCode重新hash计算出当前对象的元素在数组中的下标 :

    public V put(K key, V value) {return putVal(hash(key), key, value, false, true);}

2 . 存储时 , 如果同时出现hash值相同的key :

  1. 如果key相同,则覆盖原始值

  2. 如果key不同(出现冲突) , 则将当前的key-value放入链表或红黑树中 ;

面试官追问:HashMap的jdk1.7和jdk1.8有什么区别

  • JDK1.8之前采用的是拉链法。拉链法:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

  • jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8) 时并且数组长度达到64时,将链表转化为红黑树,以减少搜索时间。扩容 resize( ) 时,红黑树拆分成的树的结点数小于等于临界值6个,则退化成链表

4 . HashMap的put方法的具体流程

1 hashMap常见属性

2 源码分析

  • HashMap是懒惰加载,在创建对象时并没有初始化数组

  • 在无参的构造函数中,设置了默认的加载因子是0.75

添加数据流程图

注 :

  • threshold = 数组长度 * 扩容因子 ,当put元素后size>threshold之后就需要调用resize()函数进行扩容 ;

  • 如果table[i]!=null,先判断数组table[i]上的key与传过来的key是否相同 ,也就是相当于判断链表的头结点或红黑树的根节点 :

    1. 相同 : 直接覆盖原value

    2. 不相同 : 判断是不是红黑树 :

      • 是 : 在红黑树中添加元素

      • 不是,即为链表 ,遍历链表 ,判断每个结点key是不是相同 相同则覆盖,不相同则链尾插入结点 ,然后判断链表长度是否大于8,大于8的话把链表转换为红黑树;

  • 插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold(数组长度*0.75),如果超过,进行扩容。

具体的源码:

public V put(K key, V value) {return putVal(hash(key), key, value, false, true);
}
​
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {Node<K,V>[] tab; Node<K,V> p; int n, i;//判断数组是否未初始化if ((tab = table) == null || (n = tab.length) == 0)//如果未初始化,调用resize方法 进行初始化n = (tab = resize()).length;//通过 & 运算求出该数据(key)的数组下标并判断该下标位置是否有数据if ((p = tab[i = (n - 1) & hash]) == null)//如果没有,直接将数据放在该下标位置tab[i] = newNode(hash, key, value, null);//该数组下标有数据的情况else {Node<K,V> e; K k;//判断该位置数据的key和新来的数据是否一样if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))//如果一样,证明为修改操作,该节点的数据赋值给e,后边会用到e = p;//判断是不是红黑树else if (p instanceof TreeNode)//如果是红黑树的话,进行红黑树的操作e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);//新数据和当前数组既不相同,也不是红黑树节点,证明是链表else {//遍历链表for (int binCount = 0; ; ++binCount) {//判断next节点,如果为空的话,证明遍历到链表尾部了if ((e = p.next) == null) {//把新值放入链表尾部p.next = newNode(hash, key, value, null);//因为新插入了一条数据,所以判断链表长度是不是大于等于8if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st//如果是,进行转换红黑树操作treeifyBin(tab, hash);break;}//判断链表当中有数据相同的值,如果一样,证明为修改操作if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))break;//把下一个节点赋值为当前节点p = e;}}//判断e是否为空(e值为修改操作存放原数据的变量)if (e != null) { // existing mapping for key//不为空的话证明是修改操作,取出老值V oldValue = e.value;//一定会执行  onlyIfAbsent传进来的是falseif (!onlyIfAbsent || oldValue == null)//将新值赋值当前节点e.value = value;afterNodeAccess(e);//返回老值return oldValue;}}//计数器,计算当前节点的修改次数++modCount ;//当前数组中的数据数量如果大于扩容阈值if (++size > threshold)//进行扩容操作resize();//空方法afterNodeInsertion(evict);//添加操作时 返回空值return null;
}

5 HashMap的扩容机制

扩容的流程:

  • oldCap : 旧数组容量

  • 在添加元素或初始化的时候需要调用resize方法进行扩容,第一次添加数据初始化数组长度为16,以后每次每次扩容都是达到了扩容阈值(数组长度 * 0.75)

  • 每次扩容的时候,都是扩容之前容量的2倍;

  • 扩容之后,会新创建一个数组,需要把老数组中的数据挪动到新的数组中

    • 没有hash冲突的节点,则直接使用 e.hash & (newCap - 1) 计算新数组的索引位置

    • 如果是红黑树,走红黑树的添加 ;

    • 如果是链表,则需要遍历链表,可能需要拆分链表,判断(e.hash & oldCap)是否为0 ,也就是判断e.hash是否>oldCap,该元素的位置要么停留在原始位置,要么移动到原始位置+增加的数组大小这个位置上

图解示例 :

  • 在HashMap扩容额过程中 , 只有两种可能 , 一种是还在原位置上,一种是原始位置+增加的数组大小这个位置上 ;

  • 在扩容的过程中 , 不需要重新计算hash , 节省了重新计算hash值的时间 ;

  • 由于e.hash & oldCap的结果是否为0 , 可以认为是随机划分的 , 因此在resize的过程中 , 均匀的把之前的冲突的结点分散到新的bucket中去了 ;

源码:

//扩容、初始化数组
final Node<K,V>[] resize() {Node<K,V>[] oldTab = table;//如果当前数组为null的时候,把oldCap老数组容量设置为0int oldCap = (oldTab == null) ? 0 : oldTab.length;//老的扩容阈值int oldThr = threshold;int newCap, newThr = 0;//判断数组容量是否大于0,大于0说明数组已经初始化if (oldCap > 0) {//判断当前数组长度是否大于最大数组长度if (oldCap >= MAXIMUM_CAPACITY) {//如果是,将扩容阈值直接设置为int类型的最大数值并直接返回threshold = Integer.MAX_VALUE;return oldTab;}//如果在最大长度范围内,则需要扩容  OldCap << 1等价于oldCap*2//运算过后判断是不是最大值并且oldCap需要大于16else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&oldCap >= DEFAULT_INITIAL_CAPACITY)newThr = oldThr << 1; // double threshold  等价于oldThr*2}//如果oldCap<0,但是已经初始化了,像把元素删除完之后的情况,那么它的临界值肯定还存在,                如果是首次初始化,它的临界值则为0else if (oldThr > 0) // initial capacity was placed in thresholdnewCap = oldThr;//数组未初始化的情况,将阈值和扩容因子都设置为默认值else {               // zero initial threshold signifies using defaultsnewCap = DEFAULT_INITIAL_CAPACITY;newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);}//初始化容量小于16的时候,扩容阈值是没有赋值的if (newThr == 0) {//创建阈值float ft = (float)newCap * loadFactor;//判断新容量和新阈值是否大于最大容量newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?(int)ft : Integer.MAX_VALUE);}//计算出来的阈值赋值threshold = newThr;@SuppressWarnings({"rawtypes","unchecked"})//根据上边计算得出的容量 创建新的数组       Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];//赋值table = newTab;//扩容操作,判断不为空证明不是初始化数组if (oldTab != null) {//遍历数组for (int j = 0; j < oldCap; ++j) {Node<K,V> e;//判断当前下标为j的数组如果不为空的话赋值个e,进行下一步操作if ((e = oldTab[j]) != null) {//将数组位置置空oldTab[j] = null;//判断是否有下个节点if (e.next == null)//如果没有,就重新计算在新数组中的下标并放进去newTab[e.hash & (newCap - 1)] = e;//有下个节点的情况,并且判断是否已经树化else if (e instanceof TreeNode)//进行红黑树的操作((TreeNode<K,V>)e).split(this, newTab, j, oldCap);//有下个节点的情况,并且没有树化(链表形式)else {//比如老数组容量是16,那下标就为0-15//扩容操作*2,容量就变为32,下标为0-31//低位:0-15,高位16-31//定义了四个变量//        低位头          低位尾Node<K,V> loHead = null, loTail = null;//        高位头          高位尾Node<K,V> hiHead = null, hiTail = null;//下个节点Node<K,V> next;//循环遍历do {//取出next节点next = e.next;//通过 与操作 计算得出结果为0if ((e.hash & oldCap) == 0) {//如果低位尾为null,证明当前数组位置为空,没有任何数据if (loTail == null)//将e值放入低位头loHead = e;//低位尾不为null,证明已经有数据了else//将数据放入next节点loTail.next = e;//记录低位尾数据loTail = e;}//通过 与操作 计算得出结果不为0else {//如果高位尾为null,证明当前数组位置为空,没有任何数据if (hiTail == null)//将e值放入高位头hiHead = e;//高位尾不为null,证明已经有数据了else//将数据放入next节点hiTail.next = e;//记录高位尾数据hiTail = e;}} //如果e不为空,证明没有到链表尾部,继续执行循环while ((e = next) != null);//低位尾如果记录的有数据,是链表if (loTail != null) {//将下一个元素置空loTail.next = null;//将低位头放入新数组的原下标位置newTab[j] = loHead;}//高位尾如果记录的有数据,是链表if (hiTail != null) {//将下一个元素置空hiTail.next = null;//将高位头放入新数组的(原下标+原数组容量)位置newTab[j + oldCap] = hiHead;}}}}}//返回新的数组对象return newTab;}

红黑表的扩容源码 ,split()函数 :

/*** @param map 包含节点的映射* @param tab 用于记录bin头部的表格* @param index 正在拆分的表格索引* @param bit 哈希值拆分所依据的位*/
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {// 当前树节点TreeNode<K,V> b = this;// 初始化分割后的低高位树节点头尾指针TreeNode<K,V> loHead = null, loTail = null;TreeNode<K,V> hiHead = null, hiTail = null;// 初始化低高位节点计数int lc = 0, hc = 0;// 遍历当前树节点的所有子节点,根据哈希值的bit位进行分割for (TreeNode<K,V> e = b, next; e != null; e = next) {next = (TreeNode<K,V>)e.next;e.next = null;if ((e.hash & bit) == 0) {// 哈希值的bit位为0,加入低位链表if ((e.prev = loTail) == null)loHead = e;elseloTail.next = e;loTail = e;++lc;}else {// 哈希值的bit位为1,加入高位链表if ((e.prev = hiTail) == null)hiHead = e;elsehiTail.next = e;hiTail = e;++hc;}}
​// 处理低位链表,如果节点数小于等于UNTREEIFY_THRESHOLD,则转换回链表形式if (loHead != null) {if (lc <= UNTREEIFY_THRESHOLD)tab[index] = loHead.untreeify(map);else {tab[index] = loHead;if (hiHead != null) // 如果高位链表不为空,则将低位链表树化loHead.treeify(tab);}}// 处理高位链表,如果节点数小于等于UNTREEIFY_THRESHOLD,则转换回链表形式if (hiHead != null) {if (hc <= UNTREEIFY_THRESHOLD)tab[index + bit] = hiHead.untreeify(map);else {tab[index + bit] = hiHead;if (loHead != null) // 如果低位链表不为空,则将高位链表树化hiHead.treeify(tab);}}
}

步骤 :

  • 遍历红黑树 ,根据e.hash & bit是否为0将红黑树中的结点划分到两个链表当中去 ,分别是lo ,hi ;

  • 对于lo中的结点存放在新数组的原index处 ,hi链表中的结点存放在新数组的index + bit处 ;

  • 根据两个链表中结点数量lc / hc(统一称为num) ,如果num<= UNTREEIFY_THRESHOLD(值为6) ,则退化成链表,否则还是红黑树 ;

6 hashMap的寻址算法

在putVal方法中,有一个hash(key)方法,这个方法就是来去计算key的hash值的,看下面的代码 :

static final int hash(Object key) {int h;return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

首先获取key的hashCode值,然后右移16位 异或运算 原来的hashCode值,主要作用就是使原来的hash值更加均匀,减少hash冲突 , 也被称为二次hash ;

具体原理以及代码示例讲解参考 : 关于HashMap中的二次Hash-CSDN博客

二次hash的原理 :

  • 假设不进行二次hash ,原hash的高位根本不会影响得到的下标,在size比较小的情况之下 ,只会受到低位的影响 , 就算散列值分布得再松散 ,只取低位的几位的情况下(假设4位) ,很可能出现重复 ,发生hash碰撞的概率也会增大 ;

  • HashMap通过将哈希码的高16位与低16位进行异或运算,得到一个新的哈希码,这样就可以让高位也参与到运算,这个函数也被称作「扰动函数」。

有了hash值之后,就很方便的去计算当前key的在数组中存储的下标,看下面的代码:

  • (n-1)&hash : 得到数组中的索引,代替取模,性能更好,数组长度必须是2的n次幂;

  • 位运算的效率更高 ;

关于hash值的其他面试题:为何HashMap的数组长度一定是2的次幂?

  1. 计算索引时效率更高:如果是 2 的 n 次幂可以使用位与运算代替取模

  2. 扩容时重新计算索引效率更高: hash & oldCap == 0 的元素留在原来位置 ,否则新位置 = 旧位置 + oldCap

7.hashmap在1.7情况下的多线程死循环问题

jdk7的的数据结构是:数组+链表

在数组进行扩容的时候,因为链表是头插法,在进行数据迁移的过程中,有可能导致死循环

  • 变量e指向的是需要迁移的对象

  • 变量next指向的是下一个需要迁移的对象

  • Jdk1.7中的链表采用的头插法

  • 在数据迁移的过程中并没有新的对象产生,只是改变了对象的引用

产生死循环的过程:

线程1和线程2的变量e和next都引用了这个两个节点

线程2扩容后,由于头插法,链表顺序颠倒,但是线程1的临时变量e和next还引用了这两个节点

第一次循环

由于线程2迁移的时候,已经把B的next执行了A

第二次循环

第三次循环

参考回答:

在jdk1.7的hashmap中在数组进行扩容的时候,因为链表是头插法,在进行数据迁移的过程中,有可能导致死循环

比如说,现在有两个线程

线程一:读取到当前的hashmap数据,数据中一个链表,在准备扩容时,线程二介入

线程二:也读取hashmap,直接进行扩容。因为是头插法,链表的顺序会进行颠倒过来。比如原来的顺序是AB,扩容后的顺序是BA,线程二执行结束。

线程一:继续执行的时候就会出现死循环的问题。

线程一先将A移入新的链表,再将B插入到链头,由于另外一个线程的原因,B的next指向了A,

所以B->A->B,形成循环。

当然,JDK 8 将扩容算法做了调整,不再将元素加入链表头(而是保持与扩容前一样的顺序),尾插法,就避免了jdk7中死循环的问题。

8.HashSet和HashMap的区别

(1)HashSet实现了Set接口, 仅存储对象; HashMap实现了 Map接口, 存储的是键值对.

(2)HashSet底层其实是用HashMap实现存储的, HashSet封装了一系列HashMap的方法. 依靠HashMap来存储元素值,(利用hashMap的key键进行存储), 而value值默认为Object对象. 所以HashSet也不允许出现重复值, 判断标准和HashMap判断标准相同, 两个元素的hashCode相等并且通过equals()方法返回true.

9.面试题-HashTable与HashMap的区别

主要区别:

区别HashTableHashMap
数据结构数组+链表数组+链表+红黑树
是否可以为nullKey和value都不能为null可以为null
hash算法key的hashCode()二次hash
扩容方式当前容量翻倍 +1当前容量翻倍
线程安全同步(synchronized)的,线程安全非线程安全

在实际开中不建议使用HashTable,在多线程环境下可以使用ConcurrentHashMap类

10.hashMap源码总结

1 put方法流程

public V put(K key, V value) {return putVal(hash(key), key, value, false, true);
}
​
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {Node<K,V>[] tab; Node<K,V> p; int n, i;//判断数组是否未初始化if ((tab = table) == null || (n = tab.length) == 0)//如果未初始化,调用resize方法 进行初始化n = (tab = resize()).length;//通过 & 运算求出该数据(key)的数组下标并判断该下标位置是否有数据if ((p = tab[i = (n - 1) & hash]) == null)//如果没有,直接将数据放在该下标位置tab[i] = newNode(hash, key, value, null);//该数组下标有数据的情况else {Node<K,V> e; K k;//判断该位置数据的key和新来的数据是否一样if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))//如果一样,证明为修改操作,该节点的数据赋值给e,后边会用到e = p;//判断是不是红黑树else if (p instanceof TreeNode)//如果是红黑树的话,进行红黑树的操作e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);//新数据和当前数组既不相同,也不是红黑树节点,证明是链表else {//遍历链表for (int binCount = 0; ; ++binCount) {//判断next节点,如果为空的话,证明遍历到链表尾部了if ((e = p.next) == null) {//把新值放入链表尾部p.next = newNode(hash, key, value, null);//因为新插入了一条数据,所以判断链表长度是不是大于等于8if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st//如果是,进行转换红黑树操作treeifyBin(tab, hash);break;}//判断链表当中有数据相同的值,如果一样,证明为修改操作if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))break;//把下一个节点赋值为当前节点p = e;}}//判断e是否为空(e值为修改操作存放原数据的变量)if (e != null) { // existing mapping for key//不为空的话证明是修改操作,取出老值V oldValue = e.value;//一定会执行  onlyIfAbsent传进来的是falseif (!onlyIfAbsent || oldValue == null)//将新值赋值当前节点e.value = value;afterNodeAccess(e);//返回老值return oldValue;}}//计数器,计算当前节点的修改次数++modCount;//当前数组中的数据数量如果大于扩容阈值if (++size > threshold)//进行扩容操作resize();//空方法afterNodeInsertion(evict);//添加操作时 返回空值return null;
}

2 扩容

//扩容、初始化数组
final Node<K,V>[] resize() {Node<K,V>[] oldTab = table;//如果当前数组为null的时候,把oldCap老数组容量设置为0int oldCap = (oldTab == null) ? 0 : oldTab.length;//老的扩容阈值int oldThr = threshold;int newCap, newThr = 0;//判断数组容量是否大于0,大于0说明数组已经初始化if (oldCap > 0) {//判断当前数组长度是否大于最大数组长度if (oldCap >= MAXIMUM_CAPACITY) {//如果是,将扩容阈值直接设置为int类型的最大数值并直接返回threshold = Integer.MAX_VALUE;return oldTab;}//如果在最大长度范围内,则需要扩容  OldCap << 1等价于oldCap*2//运算过后判断是不是最大值并且oldCap需要大于16else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&oldCap >= DEFAULT_INITIAL_CAPACITY)newThr = oldThr << 1; // double threshold  等价于oldThr*2}//如果oldCap<0,但是已经初始化了,像把元素删除完之后的情况,那么它的临界值肯定还存在,                如果是首次初始化,它的临界值则为0else if (oldThr > 0) // initial capacity was placed in thresholdnewCap = oldThr;//数组未初始化的情况,将阈值和扩容因子都设置为默认值else {               // zero initial threshold signifies using defaultsnewCap = DEFAULT_INITIAL_CAPACITY;newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);}//初始化容量小于16的时候,扩容阈值是没有赋值的if (newThr == 0) {//创建阈值float ft = (float)newCap * loadFactor;//判断新容量和新阈值是否大于最大容量newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?(int)ft : Integer.MAX_VALUE);}//计算出来的阈值赋值threshold = newThr;@SuppressWarnings({"rawtypes","unchecked"})//根据上边计算得出的容量 创建新的数组       Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];//赋值table = newTab;//扩容操作,判断不为空证明不是初始化数组if (oldTab != null) {//遍历数组for (int j = 0; j < oldCap; ++j) {Node<K,V> e;//判断当前下标为j的数组如果不为空的话赋值个e,进行下一步操作if ((e = oldTab[j]) != null) {//将数组位置置空oldTab[j] = null;//判断是否有下个节点if (e.next == null)//如果没有,就重新计算在新数组中的下标并放进去newTab[e.hash & (newCap - 1)] = e;//有下个节点的情况,并且判断是否已经树化else if (e instanceof TreeNode)//进行红黑树的操作((TreeNode<K,V>)e).split(this, newTab, j, oldCap);//有下个节点的情况,并且没有树化(链表形式)else {//比如老数组容量是16,那下标就为0-15//扩容操作*2,容量就变为32,下标为0-31//低位:0-15,高位16-31//定义了四个变量//        低位头          低位尾Node<K,V> loHead = null, loTail = null;//        高位头          高位尾Node<K,V> hiHead = null, hiTail = null;//下个节点Node<K,V> next;//循环遍历do {//取出next节点next = e.next;//通过 与操作 计算得出结果为0if ((e.hash & oldCap) == 0) {//如果低位尾为null,证明当前数组位置为空,没有任何数据if (loTail == null)//将e值放入低位头loHead = e;//低位尾不为null,证明已经有数据了else//将数据放入next节点loTail.next = e;//记录低位尾数据loTail = e;}//通过 与操作 计算得出结果不为0else {//如果高位尾为null,证明当前数组位置为空,没有任何数据if (hiTail == null)//将e值放入高位头hiHead = e;//高位尾不为null,证明已经有数据了else//将数据放入next节点hiTail.next = e;//记录高位尾数据hiTail = e;}} //如果e不为空,证明没有到链表尾部,继续执行循环while ((e = next) != null);//低位尾如果记录的有数据,是链表if (loTail != null) {//将下一个元素置空loTail.next = null;//将低位头放入新数组的原下标位置newTab[j] = loHead;}//高位尾如果记录的有数据,是链表if (hiTail != null) {//将下一个元素置空hiTail.next = null;//将高位头放入新数组的(原下标+原数组容量)位置newTab[j + oldCap] = hiHead;}}}}}//返回新的数组对象return newTab;}

3 get方法

public V get(Object key) {Node<K,V> e;//hash(key),获取key的hash值//调用getNode方法,见下面方法return (e = getNode(hash(key), key)) == null ? null : e.value;
}
​
​
final Node<K,V> getNode(int hash, Object key) {Node<K,V>[] tab; Node<K,V> first, e; int n; K k;//找到key对应的桶下标,赋值给first节点if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & hash]) != null) {//判断hash值和key是否相等,如果是,则直接返回,桶中只有一个数据(大部分的情况)if (first.hash == hash && // always check first node((k = first.key) == key || (key != null && key.equals(k))))return first;if ((e = first.next) != null) {//该节点是红黑树,则需要通过红黑树查找数据if (first instanceof TreeNode)return ((TreeNode<K,V>)first).getTreeNode(hash, key);//链表的情况,则需要遍历链表查找数据do {if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))return e;} while ((e = e.next) != null);}}return null;
}

真实面试总结

1 Java常见的集合类

面试:说一说Java提供的常见集合?(画一下集合结构图)

候选人

嗯~~,好的。

java中提供了量大类的集合框架,主要分为两类:

第一个是Collection 属于单列集合,第二个是Map 属于双列集合

  • 在Collection中有两个子接口List和Set。在我们平常开发的过程中用的比较多像list接口中的实现类ArrarList和LinkedList。 在Set接口中有实现类HashSet和TreeSet。

  • 在map接口中有很多的实现类,平时比较常见的是HashMap、TreeMap,还有一个线程安全的map:ConcurrentHashMap

2 List

面试:ArrayList底层是如何实现的?

候选人

嗯~,我阅读过arraylist的源码,我主要说一下add方法吧

第一:确保数组已使用长度(size)加1之后足够存下下一个数据

第二:计算数组的容量,如果当前数组已使用长度+1后的大于当前的数组长度,则调用grow方法扩容(原来的1.5倍)

第三:确保新增的数据有地方存储之后,则将新元素添加到位于size的位置上。

第四:返回添加成功布尔值。

面试:ArrayList list=new ArrayList(10)中的list扩容几次

候选人

是new了一个ArrarList并且给了一个构造参数10,对吧?(问题一定要问清楚再答)

面试:是的

候选人

好的,在ArrayList的源码中提供了一个带参数的构造方法,这个参数就是指定的集合初始长度,所以给了一个10的参数,就是指定了集合的初始长度是10,这里面并没有扩容。


面试:如何实现数组和List之间的转换

候选人

嗯,这个在我们平时开发很常见

数组转list,可以使用jdk自动的一个工具类Arrars,里面有一个asList方法可以转换为数组

List 转数组,可以直接调用list中的toArray方法,需要给一个参数,指定数组的类型,需要指定数组的长度。

面试:用Arrays.asList转List后,如果修改了数组内容,list受影响吗?List用toArray转数组后,如果修改了List内容,数组受影响吗

候选人

Arrays.asList转换list之后,如果修改了数组的内容,list会受影响,因为它的底层使用的Arrays类中的一个内部类ArrayList来构造的集合,在这个集合的构造器中,把我们传入的这个集合进行了包装而已,最终指向的都是同一个内存地址

list用了toArray转数组后,如果修改了list内容,数组不会影响,当调用了toArray以后,在底层是它是进行了数组的拷贝,跟原来的元素就没啥关系了,所以即使list修改了以后,数组也不受影响


面试:ArrayList 和 LinkedList 的区别是什么?

候选人

嗯,它们两个主要是底层使用的数据结构不一样,ArrayList 是动态数组,LinkedList 是双向链表,这也导致了它们很多不同的特点。

1,从操作数据效率来说

ArrayList按照下标查询的时间复杂度O(1)【内存是连续的,根据寻址公式】, LinkedList不支持下标查询

查找(未知索引): ArrayList需要遍历,链表也需要链表,时间复杂度都是O(n)

新增和删除

  • ArrayList尾部插入和删除,时间复杂度是O(1);其他部分增删需要挪动数组,时间复杂度是O(n)

  • LinkedList头尾节点增删时间复杂度是O(1),其他都需要遍历链表,时间复杂度是O(n)

2,从内存空间占用来说

ArrayList底层是数组,内存连续,节省内存

LinkedList 是双向链表需要存储数据,和两个指针,更占用内存

3,从线程安全来说,ArrayList和LinkedList都不是线程安全的

面试:嗯,好的,刚才你说了ArrayList 和 LinkedList 不是线程安全的,你们在项目中是如何解决这个的线程安全问题的?

候选人

嗯,是这样的,主要有两种解决方案:

第一:我们使用这个集合,优先在方法内使用,定义为局部变量,这样的话,就不会出现线程安全问题。

第二:如果非要在成员变量中使用的话,可以使用线程安全的集合来替代

ArrayList可以通过Collections 的 synchronizedList 方法将 ArrayList 转换成线程安全的容器后再使用。

LinkedList 换成ConcurrentLinkedQueue来使用

3 HashMap

面试:说一下HashMap的实现原理?

候选人

嗯。它主要分为了一下几个部分:

1,底层使用hash表数据结构,即数组+(链表 | 红黑树)

2,添加数据时,计算key的值确定元素在数组中的下标

key相同则替换

不同则存入链表或红黑树中

3,获取数据通过key的hash计算数组下标获取元素

面试:HashMap的jdk1.7和jdk1.8有什么区别

候选人

  • JDK1.8之前采用的拉链法,数组+链表

  • JDK1.8之后采用数组+链表+红黑树,链表长度大于8且数组长度大于64则会从链表转化为红黑树

面试:好的,你能说下HashMap的put方法的具体流程吗?

候选人

嗯好的。

  1. 判断键值对数组table是否为空或为null,否则执行resize()进行扩容(初始化)

  2. 根据键值key计算hash值得到数组索引

  3. 判断table[i]==null,条件成立,直接新建节点添加

  4. 如果table[i]==null ,不成立

4.1 判断table[i]的首个元素是否和key一样,如果相同直接覆盖value

4.2 判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对

4.3 遍历table[i],链表的尾部插入数据,然后判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操 作,遍历过程中若发现key已经存在直接覆盖value

  1. 插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold(数组长度*0.75),如果超过,进行扩容。

面试:好的,刚才你多次介绍了hsahmap的扩容,能讲一讲HashMap的扩容机制吗?

候选人

好的

  • 在添加元素或初始化的时候需要调用resize方法进行扩容,第一次添加数据初始化数组长度为16,以后每次每次扩容都是达到了扩容阈值(数组长度 * 0.75)

  • 每次扩容的时候,都是扩容之前容量的2倍;

  • 扩容之后,会新创建一个数组,需要把老数组中的数据挪动到新的数组中

  • 没有hash冲突的节点,则直接使用 e.hash & (newCap - 1) 计算新数组的索引位置

  • 如果是红黑树,走红黑树的添加

  • 如果是链表,则需要遍历链表,可能需要拆分链表,判断(e.hash & oldCap)是否为0,该元素的位置要么停留在原始位置,要么移动到原始位置+增加的数组大小这个位置上

面试:好的,刚才你说的通过hash计算后找到数组的下标,是如何找到的呢,你了解hashMap的寻址算法吗?

候选人

这个哈希方法首先计算出key的hashCode值,然后通过这个hash值右移16位后的二进制进行按位异或运算得到最后的hash值。

在putValue的方法中,计算数组下标的时候使用hash值与数组长度取模得到存储数据下标的位置,hashmap为了性能更好,并没有直接采用取模的方式,而是使用了数组长度-1 得到一个值,用这个值按位与运算hash值,最终得到数组的位置。

面试:为何HashMap的数组长度一定是2的次幂?

候选人

嗯,好的。hashmap这么设计主要有两个原因:

第一:

计算索引时效率更高:如果是 2 的 n 次幂可以使用位与运算代替取模

第二:

扩容时重新计算索引效率更高:在进行扩容是会进行判断 hash值按位与运算旧数组长租是否 == 0

如果等于0,则把元素留在原来位置 ,否则新位置是等于旧位置的下标+旧数组长度

面试:好的,我看你对hashmap了解的挺深入的,你知道hashmap在1.7情况下的多线程死循环问题吗?

候选人

嗯,知道的。是这样

jdk7的的数据结构是:数组+链表

在数组进行扩容的时候,因为链表是头插法,在进行数据迁移的过程中,有可能导致死循环

比如说,现在有两个线程

线程一:读取到当前的hashmap数据,数据中一个链表,在准备扩容时,线程二介入

线程二也读取hashmap,直接进行扩容。因为是头插法,链表的顺序会进行颠倒过来。比如原来的顺序是AB,扩容后的顺序是BA,线程二执行结束。

当线程一再继续执行的时候就会出现死循环的问题。

线程一先将A移入新的链表,再将B插入到链头,由于另外一个线程的原因,B的next指向了A,所以B->A->B,形成循环。

当然,JDK 8 将扩容算法做了调整,不再将元素加入链表头(而是保持与扩容前一样的顺序),尾插法,就避免了jdk7中死循环的问题。

面试:好的,hashmap是线程安全的吗?

候选人:不是线程安全的

面试:那我们想要使用线程安全的map该怎么做呢?

候选人:我们可以采用ConcurrentHashMap进行使用,它是一个线程安全的HashMap

面试:那你能聊一下ConcurrentHashMap的原理吗?

候选人:好的,请参考《多线程相关面试题》中的ConcurrentHashMap部分的讲解


面试:HashSet与HashMap的区别?

候选人:嗯,是这样。

HashSet底层其实是用HashMap实现存储的, HashSet封装了一系列HashMap的方法. 依靠HashMap来存储元素值,(利用hashMap的key键进行存储), 而value值默认为Object对象. 所以HashSet也不允许出现重复值, 判断标准和HashMap判断标准相同, 两个元素的hashCode相等并且通过equals()方法返回true.

面试:HashTable与HashMap的区别

候选人

嗯,他们的主要区别是有几个吧

第一,数据结构不一样,hashtable是数组+链表,hashmap在1.8之后改为了数组+链表+红黑树

第二,hashtable存储数据的时候都不能为null,而hashmap是可以的

第三,hash算法不同,hashtable是用本地修饰的hashcode值,而hashmap经常了二次hash

第四,扩容方式不同,hashtable是当前容量翻倍+1,hashmap是当前容量翻倍

第五,hashtable是线程安全的,操作数据的时候加了锁synchronized,hashmap不是线程安全的,效率更高一些

在实际开中不建议使用HashTable,在多线程环境下可以使用ConcurrentHashMap类

以上内容基于b站黑马java面试题讲解(常见集合篇-01-集合面试题-课程介绍_哔哩哔哩_bilibili)+自己笔记以及理解 ;


http://www.ppmy.cn/news/1536124.html

相关文章

分治算法(4)_快速选择_库存管理III_面试题

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 分治算法(4)_快速选择_库存管理III_面试题 收录于专栏【经典算法练习】 本专栏旨在分享学习算法的一点学习笔记&#xff0c;欢迎大家在评论区交流讨论&#x1f…

通过下面步骤高效提升前端加载静态文件效率

每次刷新页面都会重新从服务器拉取静态文件,这样会导致页面加载变慢,特别是在静态文件较大的情况下(如 CSS、JS、图片等)。为了提升页面的加载效率,最常见的优化方式是利用 浏览器缓存机制 和 文件压缩。以下是一些提升效率的方法: 1. 使用浏览器缓存 (HTTP 缓存头) 缓…

Windows 通过 Docker 安装 GitLab

1. 安装 Docker Desktop 下载网站&#xff1a;Windows | Docker Docs 2. 拉取 GitLab Docker 镜像 打开 PowerShell 或 命令提示符&#xff0c;拉取 GitLab 镜像&#xff1a; docker pull gitlab/gitlab-ee:latest或则使用社区版&#xff1a; docker pull gitlab/gitlab-ce…

比亚迪「召回」热销车!谁担责

作为整车关键的安全件&#xff0c;底盘系统是支持行车安全与舒适的基石。相比于主、被动安全系统&#xff0c;底盘系统的故障&#xff0c;更容易直接导致事故风险的急剧上升。 9月29日&#xff0c;比亚迪发布召回公告&#xff0c;召回2023年2月4日至2023年12月26日期间生产的部…

数据库分区

一.分区简述 1&#xff09;分区的背景&#xff1a;当表中的数据量不断增大&#xff0c;查询数据的速度就会变慢(且加了索引 之后&#xff0c;仍然没有改观时)&#xff0c;这时就可以考虑对表进行分区。 2&#xff09;分区的粒度&#xff1a;某张表的大小超过2GB&#xf…

OSINT技术情报精选·2024年9月第4周

OSINT技术情报精选2024年9月第4周 2024.10.1版权声明&#xff1a;本文为博主chszs的原创文章&#xff0c;未经博主允许不得转载。 1、大模型行业可信应用框架研究报告 在2024年9月5日举行的Inclusion外滩大会“大模型的创造力边界与应用想象力”分论坛上&#xff0c;蚂蚁集团…

网络知识点之—EVPN

EVPN&#xff08;Ethernet Virtual Private Network&#xff09;是下一代全业务承载的VPN解决方案。EVPN统一了各种VPN业务的控制面&#xff0c;利用BGP扩展协议来传递二层或三层的可达性信息&#xff0c;实现了转发面和控制面的分离。 EVPN解决传统L2VPN的无法实现负载分担、…

sidecar 和 插件的区别

Sidecar 和插件是两个不同的概念&#xff0c;尽管它们都可以提高应用程序的可维护性和可扩展性&#xff0c;但它们的实现方式和用途是不同的。 Sidecar 是一种设计模式&#xff0c;主要用于在容器化环境中将辅助功能与主应用程序分离。在这种模式下&#xff0c;主应用程序运行…