基于 RealSense D435相机实现手部姿态检测

news/2024/11/17 21:22:19/

基于 RealSense D435i相机进行手部姿态检测,其中采用 Mediapipe 进行手部检测,以下是详细步骤:

Mediapipe 是一个由 Google开发的开源框架,专门用于构建多媒体处理管道,特别是计算机视觉和机器学习任务。它提供了一系列预训练的模型和工具,可以用于实时处理图像和视频流。
主要功能:

  1. 手部检测:可以检测并跟踪手部的位置和姿态。
  2. 面部检测:识别面部特征点,用于表情识别和面部跟踪。
  3. 姿态估计:检测人体的关键点,用于运动分析和健身应用。
  4. 物体检测:实现物体检测和识别,适用于各种场景。
  5. 语音识别:支持音频处理和语音识别功能。

主要特点:

  • 高效性:能够在移动设备和边缘设备上运行,具备良好的性能。
  • 跨平台:支持多种操作系统和设备,包括 Android、iOS 和桌面环境。
  • 易于使用:提供简单的 API,方便开发者快速集成和使用。

使用场景:

Mediapipe 被广泛应用于增强现实、游戏开发、健康监测、安防监控等领域。
可以访问 Mediapipe的官方文档了解详细内容和使用示例。

一、手部姿态检测

步骤 1: 安装所需库

首先,请确保您已经安装了 Python 和 pip。然后,通过以下命令安装所需库:

pip install pyrealsense2 opencv-python mediapipe numpy

步骤 2: 设置 RealSense D435i

确保您的 RealSense D435 相机已正确连接,并安装了 RealSense SDK。
可以从 Intel 的 RealSense SDK 页面获取更多信息。

步骤 3: 演示代码

以下是一个整合了 RealSense D435i 和 Mediapipe 手部检测的 Python 脚本示例。具体的实现细节可能需要根据需求进行调整。

import cv2
import numpy as np
import pyrealsense2 as rs
import mediapipe as mp# 初始化 Mediapipe 手部模块
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.7)
mp_drawing = mp.solutions.drawing_utils# 配置 RealSense 流
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)# 启动流
pipeline.start(config)try:while True:# 等待获取新的帧frames = pipeline.wait_for_frames()color_frame = frames.get_color_frame()if not color_frame:continue# 将图像转换为 NumPy 数组image = np.asanyarray(color_frame.get_data())# 转换颜色空间image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)image_rgb.flags.writeable = False# 使用 Mediapipe 检测手部results = hands.process(image_rgb)# 绘制手部标记image_rgb.flags.writeable = Trueif results.multi_hand_landmarks:for hand_landmarks in results.multi_hand_landmarks:mp_drawing.draw_landmarks(image_rgb, hand_landmarks, mp_hands.HAND_CONNECTIONS)# 在这里可以调用 Dex-Retargeting 算法,处理 hand_landmarks# dex_retargeting_function(hand_landmarks)# 显示结果cv2.imshow('Hand Tracking', image_rgb)if cv2.waitKey(1) & 0xFF == ord('q'):breakfinally:# 停止流pipeline.stop()cv2.destroyAllWindows()

步骤 4: 运行代码

将上述代码保存为 hand_tracking.py,然后在终端中运行:

python hand_tracking.py

在这里插入图片描述

二、记录/打印手指关节姿态

1、修改上述步骤 3的演示代码

# 定义手指的关键点索引范围
finger_indices = {"thumb": range(0, 5),"index": range(5, 9),"middle": range(9, 13),"ring": range(13, 17),"pinky": range(17, 21)
}try:while True:# 等待新帧frames = pipeline.wait_for_frames()color_frame = frames.get_color_frame()depth_frame = frames.get_depth_frame()if not color_frame or not depth_frame:continue# 转换为 numpy 数组img = cv2.cvtColor(np.asanyarray(color_frame.get_data()), cv2.COLOR_RGB2BGR)# 处理手部检测results = hands.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))if results.multi_hand_landmarks:for hand_landmarks in results.multi_hand_landmarks:# 绘制手部关键点mp_drawing.draw_landmarks(img, hand_landmarks, mp_hands.HAND_CONNECTIONS)# 提取并打印每个手指的关键点空间姿态for finger, indices in finger_indices.items():keypoints = [(hand_landmarks.landmark[i].x, hand_landmarks.landmark[i].y, hand_landmarks.landmark[i].z) for i in indices]print(f"{finger} keypoints: {keypoints}")# 将手指关节姿态信息写入文件with open('hand_landmarks.txt', 'a') as f:f.write(f"{finger}: {keypoints}\n")

2、结果显示和分析

thumb: [(0.9687821865081787, 0.6210590600967407, 3.910763268777373e-07), (0.9071911573410034, 0.6109362840652466, -0.03194861114025116), (0.8624528646469116, 0.554160475730896, -0.04743020609021187), (0.8405251502990723, 0.49807286262512207, -0.06013686582446098), (0.8232850432395935, 0.4591226577758789, -0.0727970078587532)]
index: [(0.9149847626686096, 0.4301099479198456, -0.02639639377593994), (0.9145824909210205, 0.3440428376197815, -0.04998774453997612), (0.9162378907203674, 0.2871255874633789, -0.07186762243509293), (0.9200422763824463, 0.23657603561878204, -0.08782264590263367)]
middle: [(0.9503715634346008, 0.4127236604690552, -0.02441730722784996), (0.9643440246582031, 0.31598132848739624, -0.042417172342538834), (0.9733370542526245, 0.2534366846084595, -0.05844615772366524), (0.9829654097557068, 0.19702278077602386, -0.07070045918226242)]
ring: [(0.9794745445251465, 0.41305306553840637, -0.026965150609612465), (0.9923086762428284, 0.3207796812057495, -0.04289492592215538), (1.0009437799453735, 0.2619915306568146, -0.05437065660953522), (1.0100406408309937, 0.21127769351005554, -0.06270640343427658)]
pinky: [(1.0050956010818481, 0.42907220125198364, -0.033185433596372604), (1.018389105796814, 0.3570478856563568, -0.046027250587940216), (1.024712324142456, 0.31118300557136536, -0.0520443469285965), (1.030387043952942, 0.2696005702018738, -0.05643028765916824)]

上述代码打印的信息表示了拇指各个关节在三维空间中的位置坐标。具体来说,每个元组代表一个关节的 (x)、(y) 和 (z)坐标,解释如下:

  1. 拇指的关节列表

    • thumb:表示这是拇指的关键点信息。
    • 里面的每个元组均表示拇指某个关节的空间坐标。
  2. 坐标含义

    • 每个元组包含三个值:
      • (x): 表示该关节在图像宽度方向上的相对位置,值范围为 0 到 1。
      • (y): 表示该关节在图像高度方向上的相对位置,值范围为 0 到 1。
      • (z): 表示关节相对于手掌的深度值(通常是负值表示离相机更远,正值则表示更近)。

对于拇指的五个关节,上述打印的坐标信息分别是:

  1. 第一个关节(根部): ((0.9688, 0.6211, 0))
  2. 第二个关节: ((0.9072, 0.6109, -0.0319))
  3. 第三个关节: ((0.8625, 0.5542, -0.0474))
  4. 第四个关节: ((0.8405, 0.4981, -0.0601))
  5. 第五个关节(指尖): ((0.8233, 0.4591, -0.0728))
    这些数据可以用于分析拇指的姿态和运动,帮助实现手势识别或其他与手部交互相关的应用。

三、注意事项

  1. 确保 RealSense D435i 相机已连接并正常工作。
  2. 若有其他依赖项或运行环境问题,请根据错误提示进行调试。
  3. 调整 min_detection_confidence 和 min_tracking_confidence 以提高检测效果。

通过这些步骤,可以实现手部姿态检测,并将每个手指的关节空间姿态信息保存到文件中。


http://www.ppmy.cn/news/1531904.html

相关文章

常见的编码 (ASCII, Unicode, UTF-8, GBK, base64, urlencode)

编码在爬虫中经常涉及,常见的编码有常规编码(ASCII、Unicode、UTF-8、GBK), base64, urlencode。 下面逐一介绍: 1. 常规编码 常规编码约定了字符集中字符与一定长度二进制的映射关系,字符集是指各国家的文字、标点…

Docker 安装 ClickHouse 教程

Docker 安装 ClickHouse 教程 创建目录 首先,创建必要的目录用于存放 ClickHouse 的配置、数据和日志文件。 mkdir -p /home/clickhouse/conf mkdir -p /home/clickhouse/data mkdir -p /home/clickhouse/log chmod -R 777 /home/clickhouse/conf chmod -R 777 /…

【反素数】

题目 思路 首先分析 的性质 一定是 中约数最大的一定是约数同是最大的数字中值中最小的进一步挖掘性质,紧贴枚举的做法 约数最大值最小(也决定了层数、其它约束),是枚举的比较条件实现上述目的,枚举的质数种类在大小…

mysql如何替换数据库所有表中某些字段含有的特定值

目录 背景查询所有表名查询表的所有字段过虑特征字段替换字段中含有的特定值 背景 公司的测试域名更换了,导致存放在数据库中的域名也要跟着替换,当然把域名存放在数据库表中是不科学的,不建议这样做,但公司的同事就这样做了&…

CSS 的背景样式

1.1 背景颜色 1.2 背景图片 1.3 背景平铺 1.4 背景图片位置 1.4.1 方位名词 1.4.2 精确单位 1.4.3 混合单位 1.5 背景图像固定 1.6 背景复合写法 1.7 背景色半透明 1.8 总结

UE学习篇ContentExample解读------Blueprints Advanced-下

文章目录 总览描述批次阅览2.1 Timeline animation2.2 Actor tracking2.3 Button Trigger using a blueprint interface2.4 Opening door with trigger2.5 Child Blueprints 概念总结致谢: 总览描述 打开关卡后,引入眼帘的就是针对关卡的总体性文字描述&…

抖店电商怎么使用云账户解决资金提现?

多平台流水资金统一进入电商客户在银行的资金监管专户中,直接向各供应商、各经销商分账结算 可将某淘、某猫、某东、拼某某、抖某等多家电商平台的结算资金统一结算到银行专用监管专户,在我们的系统中完成与供应链厂商的分账和结算,实现了资…

Redis:持久化

1. Redis持久化机制 Redis 支持 RDB 和 AOF 两种持久化机制,持久化功能有效地避免因进程退出造成数据丢失问题, 当下次重启时利⽤之前持久化的文件即可实现数据恢复。 2.RDB RDB 持久化是把当前进程数据⽣成快照保存到硬盘的过程,触发 RDB…