专题四_位运算( >> , << , , | , ^ )_算法详细总结

news/2024/12/22 11:24:23/

目录

位运算

常见位运算总结

1.基础位运算

2.给一个数 n ,确定它的二进制表示中的第 x 位是 0 还是 1

3.运算符的优先级

4.将一个数 n 的二进制表示的第 x 位修改成 1 

5.将一个数n的二进制表示的第x位修改成0

6.位图的思想

7.提取一个数(n)二进制表示中最右侧的 1 (lowbit)

8.干掉一个数(n)二进制表示中最右侧的 1

9.异或(^) 运算的规律

1. 判断字符是否唯⼀(easy)

解析:

1.暴力

2.位运算

总结:

2. 丢失的数字(easy)

解析:

1.暴力

2.位运算

总结:

3. 两整数之和(medium)

解析:

1.暴力:

2.位运算

总结:

4. 只出现⼀次的数字 II(medium)

解析:

1.暴力:

2.位运算:

总结:

5. 消失的两个数字(hard)

解析:

1.暴力:

2.位运算

总结:


位运算

常见位运算总结

1.基础位运算

  << : 数 n 的二进制左移x位                         按位与  &:有 0 就 0  (看&有没有很圆,长得很像0)

  >> : 数 n 的二进制右移x位                         按位或  | : 有 1 就 1  (看|  是不是长得很像1)

  ~  (按位取反,所有位0变1,1变0)          异或运算 ^ : 相同为0 ,相异为 1 / 无尽位相加 

eg:

2.给一个数 n ,确定它的二进制表示中的第 x 位是 0 还是 1

3.运算符的优先级

能加括号就加括号u,绝对不会错

4.将一个数 n 的二进制表示的第 x 位修改成 1 

5.将一个数n的二进制表示的第x位修改成0

那么就跟上一个思路一样,只要第x位,遇0,变0,即可。(&按位与)其他位全都&上一个1即可。

6.位图的思想

位图的思想其实就是哈希表

7.提取一个数(n)二进制表示中最右侧的 1 (lowbit)

n & (-n)  本质就是,得到最右侧的1,那么要考虑其他位都是于n 的每一位相反,但就是要保证最右侧的1,不变,然后&即可。

那么 (-n)就是先~(按位取反)再+1,就会让按位取反的1全都进位,变成0,知道遇到取反后的第一个0,变成1,就又变回了原来的1,然后再&即可。

8.干掉一个数(n)二进制表示中最右侧的 1

n & (n-1)  ,条件就是 n -1 就能一直向前借位,知道第一个不是0的1变成0.

再& ,就只会改变左边到借位这些位,全部都遇0,变0,到达删掉最右侧的1的效果 

9.异或(^) 运算的规律

1.a ^ 0 = a

2.a ^ a = 0 (消消乐)

3.a ^ b ^ c = a ^ (b ^ c)

^异或,再其数二进制的每一位上,相同为0,相异为1

那么就直接上例题:

1. 判断字符是否唯⼀(easy)

题目就是判断是不是字符串的字符是不是又重复的,但是不能借助任何数据结构,那么就可以考虑利用位运算,把字符当作比特位一样放在32位的数组里,如果有重复的,那么就可以利用比特位的0或1来判断。

解析:

1.暴力

不用多说,就是创建一个数组,来判断是否有字符的个数大于等于2,就返回false

2.位运算

利用一个int型32比特位来计算是否存在重复的字符,可以将字符s[i]-'a' 来存入这个32位里

class Solution {
public:bool isUnique(string astr) {int n=astr.size();if(n>26) return false;int bitMap=0;for(auto e : astr){int i=e-'a';//判断该字符是否存在过if((bitMap>>i)&1==1) return false;//如果不是,我就要把第i位改成1;bitMap |= (1<<i);}return true;}
};

总结:

用bitMap来创建一个相当于int型的数组,i来存储每一位字符该移动的位数,那么就将bitMap>>i移动i位后,在跟1进行按位与,如果第一位都是1,那么就会得到1,说明之前就重复存在过,返回false

只要没有返回false 说明都是第一次出现,那么就将他bitMap这一比特位进行改变为1 ,先将1<<左移i位后进行或等于。遇1就改变。

2. 丢失的数字(easy)

这题题目意思比较简单,就是数组范围是[0,n] 那么他们就缺少一个数字x,对于ret进行^异或计算,^异或有消消乐的能力,也有无进位相加,那么进行消消乐,最后有一个数没有被消掉,就可以直接返回。

解析:

1.暴力

不用多少,排序后对数组的每一个元素跟[0,n]进行比较,如果有有一个不相等,那么就返回这个i

2.位运算

利用^异或运算,将没有消掉的数字进行返回就ok

class Solution {
public:int missingNumber(vector<int>& nums) {int ret=0;for(auto e : nums) ret^=e;for(int i=0;i<=nums.size();i++) ret^=i;return ret;}
};

总结:

^异或运算, 具有消消乐和无进位相加,那么这题就利用了消消乐的性质,翻译过来其实就是找到只出现了一次的数字这个意思,将出现了两次的数字给消掉了

3. 两整数之和(medium)

不使用加减得到两数之和,那么就肯定考虑的是位运算,利用上一题提到的^,无进位相加,具有相加性质,那么就可以进行运算

解析:

1.暴力:

其实像这种都是简单的面试题,如果未来机式,管他3*7=21,都是直接return a+b;

2.位运算

利用^ 异或运算,进行无进位相加,那么相加的都是无进位的,然后将这个值赋值给a,在单独求进位,这个时候你会发现(a&b) 就全是进位,但是都是本该进位的值在原来的位,所以全都要进一位,就全都要进行<<1左移1位,在赋值给b,在重复进行(a^b),直到b无进位为止

class Solution {
public:int getSum(int a, int b) {while(b){int x=a^b;int jinwei=(a&b)<<1;a=x;b=jinwei;//知道进位为0}return a;}
};

总结:

本题利用^异或运算进行无进位相加,但是仍具有相加性质,只要在单独加上进位即可(只需要发现(a&b)全都是进位)

4. 只出现⼀次的数字 II(medium)

题目意思挺简单的,就是找数组中只出现了1次的数字,其他数字都出现了3次,那么就不能像上一题一样用^异或运算,消掉两个重复出现的数字,那么就会让数组全变成一个数字,那么就考虑其他位运算解决,本题有点难理解,还是要用心体会。

解析:

1.暴力:

用哈希表,每当把整个数组相同的数字都存到一起,最后返回只出现了一次的数字,有点麻烦了,时间复杂度高,空间复杂度也高

2.位运算:

我第一次写的时候听了好几遍视频,真的挺不好理解的。

class Solution {
public:int singleNumber(vector<int>& nums) {int ret=0;int n=nums.size();for(int i=0;i<32;i++){int sum=0;for(auto e : nums) if((e>>i)&1) sum++; //计算nums中所有数的第i位的和是多少if(sum%3) ret |= (1<<i);}return ret;}
};

总结:

首先就是再数组中找到只出现一次的数字,其他的数字都是出现三次,由于题目不让额外开辟新空间,那么就是说明只能利用位运算进行计算
那么就要思考从哪下手,比如记录一个整个数组的所有位,(每个数都含有32位,占4个字节),那么我们使用位运算,将整个数组的同一位进行相加,eg:第1位 有3n个1+0 -> 3n 或者  3n个0 + 0 -> 0  等4种情况,因为都是出现3次,那么就把记录这个位出现的次数%3 =0 或则1 ,这就证明ret 这个只出现一次的这个数字,这一位就是这个0 或者1,那么就改变ret这32位里面的这一位,知道遍历完整个数组的所有32位即可

5. 消失的两个数字(hard)

虽然这题是困难题,但是只要弄得前面的题目真很easy

解析:

1.暴力:

那就是用数组,任何一个个比较,但是违反了题意

2.位运算

就是前面几个题目的结合,理解位运算的本质,然后进行运用
方法一:sort时间复杂度不达标O(NlogN)>O(N),还可能退化到O(N^2)
O(N) 时间内只用 O(1) 的空间   就是位运算
在这种条件下,只有用位运算是最快,最节省空间的,并且很好想,就拿^ 异或运算来说,这个就相当于消消乐,因为nums数组里面全都是从1开始的数字,全部都^ 异或后,在对i从1开始到n+2个数字进行^
消除掉已经存在的数字,那么sum中记录的就是最后剩余的两个元素,即不纯在的两个数字,那么我们只需要找到一个已经消失的数字,那么再次与sum进行^ 就可以得到两个都不存在的数字
但是后面的测试用例可能不是完全有序,我就开始进行sort,这样就可以判断当nums[0]!=1的时候就可以判断出极端情况,直接得出有一个1不存在,那么就可以得到第二个不存在的数字,但是这样sort就会发现排序就花了O(NlogN) 况且当数组接近有序的时候,快排就退化到O(N^2) 所以还要进行优化
方法二:
优化:为了不排序,让时间复杂度跳到O(logN) 那么就是当tmp记录到只剩下消失的两个数字a,b那么就明白,当tmp32位里面有一位等于1的时候,就说明,在这一位上要么a==1,b==0 要么a==0,b==1 ,就是a与b在这一个比特位上绝对不同,那么就可以在1到n+2,这么多数里面进行^异或,只要在这一个比特位上数字为1的就把他^异或到a里,如果为0,就^异或到b里,然后在^异或数组nums里面的所有元素,那么a 和 b 就会被单独独立出来
class Solution {
public:vector<int> missingTwo(vector<int>& nums) {int tmp=0;for(auto e : nums) tmp^=e;for(int i=1;i<=nums.size()+2;i++) tmp^=i;//那么现在只剩下a,b,找出比特位不同的那一位int diff=0;while(1){if((tmp>>diff)&1) break;else diff++;} //根据diff位进行计算未出现的数字int a=0,b=0;for(int i=1;i<=nums.size()+2;i++){if((i>>diff)&1) a^=i;else b^=i;}for(auto e : nums){if((e>>diff)&1) a^=e;else b^=e;}return {a,b};}
};

总结:

就是从数组里面找出两个消失的数字,那么就考虑^异或运算,但是最后ret里面存的就是最后消失的两个数字,所以要将两个数分离。

1.就是找到一个已经消失的数,然后再进行^异或,就可以得到,但是数组要进行排序才行

2.不进行排序,那么ret里面有两个不同的数,那么并且已经进行^ 异或运算,相同为0,相异为1,当找到ret比特位有为1的时候就证明a与b已经有分离的办法,将数组里面所有再该位比特位为1的存入a,为0的存入b,然后再将每个数字进行^异或 就能完美的将a 与 b进行分离。

总结一下吧~位运算刚开始听的时候确实很吃力,也很难,但是当上面结论用多了,确实也很简单,正所谓熟能生巧,我的进步很大,希望对你也是~


http://www.ppmy.cn/news/1527118.html

相关文章

Nginx搭建直播服务器,并用rtmp,http-flv,hls三种模式拉流观看直播的流程

一、首先搭建直播服务器 环境widows&#xff0c;并且已经集成了 &#xff1a;nginx-http-flv-module模块 nginx.conf配置如下&#xff1a; worker_processes 1;#error_log logs/error.log; #error_log logs/error.log notice; #error_log logs/error.log info; #error…

Python 爬虫入门 - Request 静态页面数据获取

在现代 Web 开发中,HTTP 请求(Request)是与服务器进行通信的核心操作。无论是在前端还是后端开发中,数据的获取、传递以及处理都离不开请求的应用。特别是在静态页面的数据获取中,使用请求可以将页面变得更加动态和互动,从而大大提升用户体验,使得页面内容更加丰富和灵活…

软件安全、逆向分析、加密与解密--crackme2详解

本次使用到的软件有&#xff1a;PEiD、IDA、X32dbg 刚学逆向不久&#xff0c;可能有些地方会有错误&#xff0c;欢迎各位大佬指导 执行 运行程序 点击About 点击确定&#xff0c;输入如图数据 点击try Now 点击确定&#xff0c;回到主界面 点击Exit&#xff0c;退出 查壳&a…

ICMP

目录 1. 帧格式2. ICMPv4消息类型(Type = 0,Code = 0)回送应答 /(Type = 8,Code = 0)回送请求(Type = 3)目标不可达(Type = 5,Code = 1)重定向(Type = 11)ICMP超时(Type = 12)参数3. ICMPv6消息类型回见TCP/IP 对ICMP协议作介绍 ICMP(Internet Control Messag…

Vue路由二(嵌套多级路由、路由query传参、路由命名、路由params传参、props配置、<router-link>的replace属性)

目录 1. 嵌套(多级)路由2. 路由query传参3. 路由命名4. 路由params传参5. props配置6. <router-link>的replace属性 1. 嵌套(多级)路由 pages/Car.vue <template><ul><li>car1</li><li>car2</li><li>car3</li></ul…

PostMan使用变量

环境变量 使用场景 当测试过程中&#xff0c;我们需要对开发环境、测试环境、生产环境进行测试 不同的环境对应着不同的服务器&#xff0c;那么这个时候我们就可以使用环境变量来区分它们 避免切换测试环境后&#xff0c;需要大量的更改接口的url地址 全局变量 使用场景 当…

TCP并发服务器的实现

一请求一线程 问题 当客户端数量较多时&#xff0c;使用单独线程为每个客户端处理请求可能导致系统资源的消耗过大和性能瓶颈。 资源消耗&#xff1a; 线程创建和管理开销&#xff1a;每个线程都有其创建和销毁的开销&#xff0c;特别是在高并发环境中&#xff0c;这种开销…

代码随想录打卡Day35

今天还是以看视频为主&#xff0c;主要是力扣上合适的题目不多&#xff0c;今天主要是学习0-1背包的二维数组解法和一维数组解法&#xff0c;今天题目不多&#xff0c;但是debug花了我好久时间。。。主要还是对0-1背包不够熟悉。 46. 携带研究材料&#xff08;卡码网&#xff…