【算法】滑动窗口—最小覆盖子串

news/2025/3/14 17:04:54/

题目

         ”最小覆盖子串“问题,难度为Hard,题目如下:

        给你两个字符串 S 和 T,请你在 S 中找到包含 T 中全部字母的最短子串。如果 S 中没有这样一个子串,则算法返回空串,如果存在这样一个子串,则可以认为答案是唯一的。

        比如输入 S = "ADBECFEBANC",T = "ABC",算法应该返回 "BANC"。

        如果我们使用暴力解法,代码大概是这样的:

        for (int i = 0; i < s.size; i++) {

                for (int j = i + 1; j < s.size; j++) {

                        if [i : j] 包含 t 的所有字母:

                                更新答案

                }

        }

        思路很简单,但显然不是我们想要的。

滑动窗口思路分析

        1.我们在字符串 S 中使用双指针中的左、右指针技巧,初始化 left = right = 0,把索引左闭右开区间 [left, right) 称为一个”窗口“。

        2.先不断地增加 right 指针扩大窗口 [left, right),直到窗口中的字符串符合要求(包含了 T 中的所有字符)。

        3.此时,停止增加 right,转而不断增加 left 指针缩小窗口 [left, right),直到窗口中的字符串不再符合要求(不包含 T 中所有字符了)。同时,每次增加 left,都要更新一轮结果。

        4.重复第2和第3步,直到 right 到达字符 S 的尽头。

        第2步相当于在寻找一个”可行解“,然后第3步在优化这个”可行解“,最终找到最优解,也就是最短的覆盖子串。左、右指针轮流前进 ,窗口大小增增减减,窗口不断向右滑动,这就是”滑动窗口“这个名字的来历。

        下面画图理解一下这个思路。needs 和 window 相当于计数器,分别记录 T 中字符出现次数和”窗口“中的相应字符的出现次数。

        初始状态:

a2a6f4fbc2554d7388c9120dc1ef8546.png

        增加 right,直到窗口 [left, right) 包含了 T 中所有字符:

ac2a978709634b9e90beb1d1fcd7b4ca.png

        现在开始增加 left,缩小窗口 [left, right):

79ce1706f6074f41bed6491fa30752e4.png

        直到窗口中的字符串不再符合要求,left 不再继续移动:

724c5c8420884e56af1c8aff2d98f2e6.png

        之后重复上述过程,先移动 right,再移动 left······直到 right 指针到达字符串 S 的末端,算法结束。现在来看看滑动窗口代码框架怎么用。

        首先,初始化 window 和 need 两个哈希表,记录窗口中的字符和需要凑齐的字符:

        Map<Character, Integer> need = new HashMap<>();
        Map<Character, Integer> window = new HashMap<>();
        for (int i = 0; i < t.length(); i++) {
            char key = t.charAt(i);
            need.put(key, need.getOrDefault(key, 0) + 1);
        }

        然后,使用 left 和 right 变量初始化窗口的两端,不要忘了,区间 [left, right) 是左闭右开的,所以初始情况下窗口没有包含任何元素:

        int left = 0, right = 0, valid = 0;
        while (right < s.length()) { // 开始滑动 }

        其中,valid 变量表示窗口中满足 need 条件的字符个数,如果 valid 和 need.size 的大小相同,则说明窗口已满足条件,已经完全覆盖了串 T。

        现在开始套模板,只需要思考以下4个问题:

        1.当移动 right 扩大窗口,即加入字符时,应该更新哪些数据?

        2.什么条件下,窗口应该暂停扩大,开始移动 left 缩小窗口?

        3.当移动 left 缩小窗口,即移出字符时,应该更新哪些数据?

        4.我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?

        一般来说,如果一个字符进入窗口,应该增加 window 计数器;如果一个字符移出窗口,应该减少 window 计数器;当 valid 满足 need 时应该收缩窗口;收缩窗口的时候应该更新最终结果。

        下面是完整代码:

package SlidingWindow;import java.util.HashMap;
import java.util.Map;// leetcode 017 最小覆盖子串
public class MCS {public String slidingWindow(String s, String t) {Map<Character, Integer> need = new HashMap<>();Map<Character, Integer> window = new HashMap<>();for (int i = 0; i < t.length(); i++) {char key = t.charAt(i);need.put(key, need.getOrDefault(key, 0) + 1);}int left = 0, right = 0, valid = 0; // valid 表示窗口中满足 need 条件的字符个数// 记录最小覆盖子串的启始索引及长度int start = 0, len = Integer.MAX_VALUE;while (right < s.length()) {// c 是将要移入窗口的字符char c = s.charAt(right);// 右移窗口right++;// 进行窗口内数据的一系列更新if (need.containsKey(c)) {window.put(c, window.getOrDefault(c, 0) + 1);if (window.getOrDefault(c, 0).equals(need.getOrDefault(c, 0))) { // window[c] == need[c]valid++;}}/*** debug 输出的位置***/System.out.println("window:(" + left + ", " + right + ")");/*********************/// 判断左侧窗口是否要收缩while (valid == need.size()) { // window need shrink —窗口需要收缩// 在这里更新最小覆盖子串if (right - left < len) {start = left;len = right - left;}// d 是将要移出窗口的字符char d = s.charAt(left);// 左移窗口left++;// 进行窗口内数据的一系列更新if (need.containsKey(d)) {if (window.getOrDefault(d, 0).equals(need.getOrDefault(d, 0))) {valid--;}window.put(d, window.getOrDefault(d, 0) - 1);}}}// 返回最小覆盖子串return len == Integer.MAX_VALUE ? "" : s.substring(start, start + len); // s.substring(start, start + len) == C++ 中的 s.substr(start, len)}public static void main(String[] args) {MCS mcs = new MCS();String str = mcs.slidingWindow("ADOBECODEBANC", "ABC");System.out.println(str);}}


http://www.ppmy.cn/news/1526980.html

相关文章

网络安全(黑客技术)2024年—全新自学手册

&#x1f91f; 基于入门网络安全/黑客打造的&#xff1a;&#x1f449;黑客&网络安全入门&进阶学习资源包 前言 什么是网络安全 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、…

2022高教社杯全国大学生数学建模竞赛C题 问题一(1) Python代码

目录 问题 11.1 对这些玻璃文物的表面风化与其玻璃类型、纹饰和颜色的关系进行分析数据探索 -- 单个分类变量的绘图树形图条形图扇形图雷达图Cramer’s V 相关分析统计检验列联表分析卡方检验Fisher检验绘图堆积条形图分组条形图分类模型Logistic回归随机森林import matplotlib…

昇腾服务器(Atlas800系列)部署embedding和rerank模型

昇腾服务器部署embedding和rerank模型 1、确定安装环境 环境型号CANN版本训练环境Atlas800T A2服务器CANN8.0.RC2及以上推理环境Atlas800I A2服务器CANN8.0.RC2及以上推理环境Atlas300IDUO推理卡CANN8.0.RC2及以上 2、获取下载包 资源包 可以使用wget命令下载&#xff1a;…

【数据结构】顺序表的定义和实现

顺序表的定义 顺序表是指用顺序存储的方式实现线性表 顺序存储&#xff1a;把逻辑上相邻的元素存储在物理位置上也相邻的存储单元中&#xff0c;元素之间的关系由存储单元的邻接关系来体现 【看到这是否会和我有同样的疑问&#xff1a;顺序表和数组是一样的吗&#xff1f;这…

Python计算机视觉编程 第三章 图像到图像的映射

目录 单应性变换直接线性变换算法仿射变换 图像扭曲图像中的图像分段仿射扭曲 创建全景图RANSAC拼接图像 单应性变换 单应性变换是将一个平面内的点映射到另一个平面内的二维投影变换。在这里&#xff0c;平面是指图像或者三维中的平面表面。单应性变换具有很强的实用性&#…

【计网】从零开始使用TCP进行socket编程 --- 客户端与服务端的通信实现

阵雨后放晴的天空中&#xff0c; 出现的彩虹很快便会消失。 而人心中的彩虹却永不会消失。 --- 太宰治 《斜阳》--- 从零开始使用TCP进行socket编程 1 TCP与UDP2 TCP服务器类2.1 TCP基础知识2.2 整体框架设计2.3 初始化接口2.4 循环接收接口与服务接口 3 服务端与客户端测试…

【HTML】HTML页面和常见标签

文章目录 什么是前端HTML 页面编写如何快速生成代码框架常见标签注释标签标题标签段落标签换行标签格式化标签 什么是前端 Web 前端&#xff0c;用来直接给以用户呈现的一个一个的网页。一个软件通常是由 后端前端 完成的 后端&#xff1a;通过 Java/C等语言&#xff0c;完成相…

TS axios封装

方式一 service/request/request.ts import axios from axios import { ElLoading } from element-plus import type { AxiosRequestConfig, AxiosInstance, AxiosResponse } from axios import type { ILoadingInstance } from element-plus/lib/el-loading/src/loading.typ…