题目
给你二叉搜索树的根节点 root ,该树中的两个节点被错误地交换。请在不改变其结构的情况下,恢复这棵树。
进阶:使用 O(n) 空间复杂度的解法很容易实现。你能想出一个只使用常数空间的解决方案吗?
示例 1:
输入:root = [1,3,null,null,2]
输出:[3,1,null,null,2]
解释:3 不能是 1 左孩子,因为 3 > 1 。交换 1 和 3 使二叉搜索树有效。
示例 2:
输入:root = [3,1,4,null,null,2]
输出:[2,1,4,null,null,3]
解释:2 不能在 3 的右子树中,因为 2 < 3 。交换 2 和 3 使二叉搜索树有效。
提示:
- 树上节点的数目在范围 [2, 1000] 内
- -231 <= Node.val <= 231 - 1
参考答案
class Solution {
public:void recoverTree(TreeNode* root) {TreeNode *x = nullptr, *y = nullptr, *pred = nullptr, *predecessor = nullptr;while (root != nullptr) {if (root->left != nullptr) {// predecessor 节点就是当前 root 节点向左走一步,然后一直向右走至无法走为止predecessor = root->left;while (predecessor->right != nullptr && predecessor->right != root) {predecessor = predecessor->right;}// 让 predecessor 的右指针指向 root,继续遍历左子树if (predecessor->right == nullptr) {predecessor->right = root;root = root->left;}// 说明左子树已经访问完了,我们需要断开链接else {if (pred != nullptr && root->val < pred->val) {y = root;if (x == nullptr) {x = pred;}}pred = root;predecessor->right = nullptr;root = root->right;}}// 如果没有左孩子,则直接访问右孩子else {if (pred != nullptr && root->val < pred->val) {y = root;if (x == nullptr) {x = pred;}}pred = root;root = root->right;}}swap(x->val, y->val);}
};