C++ 列式内存布局数据存储格式 Arrow

news/2024/12/22 11:28:56/

Apache Arrow 优点 :
    高性能数据处理: Arrow 使用列式内存布局,这特别适合于数据分析和查询操作,因为它允许对数据进行高效批量处理,减少CPU缓存未命中,从而提升处理速度。
    零拷贝数据共享: Arrow 允许不同系统和进程之间直接共享内存中的数据而无需复制,这对于提高数据密集型应用的效率至关重要,减少了内存使用和CPU开销。
    跨平台兼容性: Arrow 是一个跨语言开发平台,支持C++, Java, Python等多种编程语言,促进了不同软件组件间的互操作性。
    标准化数据格式: 定义了一套统一的数据格式规范,使得数据可以在不同系统间无缝传递,降低了数据转换的成本和复杂性。
    优化大数据处理: 特别是在与大数据框架(如Spark、Pandas)集成时,Arrow 可显著加速数据加载、处理和分析的速度,例如,与PySpark集成后数据处理速度提升高达53倍。
    集成广泛: 被众多数据处理工具和库采用,如Pandas、Parquet、Drill、Spark等,形成了强大的生态系统。
Apache Arrow 缺点 :
    内存消耗: 列式存储相对于行式存储可能需要更多的内存,尤其是在处理稀疏数据或宽表时,因为每一列都需要分配连续的内存空间。
    不适合所有场景: 对于需要频繁随机访问记录或更新操作的场景,Arrow 的列式存储可能不如传统的行式存储高效。
    学习曲线: 对于新用户来说,理解和掌握Arrow的数据结构和API可能需要一定时间,尤其是当他们习惯于使用其他数据处理模型时。
    生态成熟度: 虽然Arrow的生态系统正在快速发展,但在某些特定领域或小众技术栈中,相关支持和工具可能不够丰富或成熟。
    实现复杂性: 对于开发者来说,实现Arrow的高效利用可能涉及到复杂的内存管理和优化策略,这在某些情况下可能会增加开发难度。


#define ARROW_COMPUTE#include <arrow/compute/api.h>
#include "arrow/pretty_print.h"
#include <arrow/api.h>
#include <arrow/csv/api.h>
#include <arrow/json/api.h>
#include <arrow/io/api.h>
#include <arrow/table.h>
#include <arrow/pretty_print.h>
#include <arrow/result.h>
#include <arrow/status.h>
#include <arrow/ipc/api.h>
#include <parquet/arrow/reader.h>
#include <parquet/arrow/writer.h>
#include <parquet/exception.h>
#include <memory>
#include <iostream>template <typename T>
using numbuildT = arrow::NumericBuilder<T>;struct ArrowUtil {static arrow::Status read_csv(char const* file_name, std::shared_ptr<arrow::Table>& tb);static arrow::Status read_ipc(char const* file_name, std::shared_ptr<arrow::Table>& tb);static arrow::Status read_parquet(char const* file_name, std::shared_ptr<arrow::Table>& tb);static arrow::Status read_json(char const* file_name, std::shared_ptr<arrow::Table>& tb);static arrow::Status write_ipc(arrow::Table const& tb, char const* file_name);static arrow::Status write_parquet(arrow::Table const& tb, char const* file_name);template <typename T, typename buildT, typename arrayT>inline static std::shared_ptr<arrow::Array> chunked_array_to_array(std::shared_ptr<arrow::ChunkedArray> const& array_a) {buildT int64_builder;int64_builder.Resize(array_a->length());std::vector<T> int64_values;int64_values.reserve(array_a->length());for (int i = 0; i < array_a->num_chunks(); ++i) {auto inner_arr = array_a->chunk(i);auto int_a = std::static_pointer_cast<arrayT>(inner_arr);for (int j = 0; j < int_a->length(); ++j) {int64_values.push_back(int_a->Value(j));}}int64_builder.AppendValues(int64_values);std::shared_ptr<arrow::Array> array_a_res;int64_builder.Finish(&array_a_res);return array_a_res;}template <typename T, typename arrayT>inline static std::vector<T> chunked_array_to_vector(std::shared_ptr<arrow::ChunkedArray> const& array_a) {std::vector<T> int64_values;int64_values.reserve(array_a->length());for (int i = 0; i < array_a->num_chunks(); ++i) {auto inner_arr = array_a->chunk(i);auto int_a = std::static_pointer_cast<arrayT>(inner_arr);for (int j = 0; j < int_a->length(); ++j) {int64_values.push_back(int_a->Value(j));}}return int64_values;}inline static std::vector<std::string> chunked_array_to_str_vector(std::shared_ptr<arrow::ChunkedArray> const& array_a) {std::vector<std::string> int64_values;int64_values.reserve(array_a->length());for (int i = 0; i < array_a->num_chunks(); ++i) {auto inner_arr = array_a->chunk(i);auto int_a = std::static_pointer_cast<arrow::StringArray>(inner_arr);for (int j = 0; j < int_a->length(); ++j) {int64_values.push_back(int_a->Value(j).data());}}return int64_values;}inline static std::shared_ptr<arrow::Array> chunked_array_to_str_array(std::shared_ptr<arrow::ChunkedArray> const& array_a) {arrow::StringBuilder int64_builder;int64_builder.Resize(array_a->length());std::vector<std::string> int64_values;int64_values.reserve(array_a->length());for (int i = 0; i < array_a->num_chunks(); ++i) {auto inner_arr = array_a->chunk(i);auto int_a = std::static_pointer_cast<arrow::StringArray>(inner_arr);for (int j = 0; j < int_a->length(); ++j) {int64_values.push_back(int_a->Value(j).data());}}int64_builder.AppendValues(int64_values);std::shared_ptr<arrow::Array> array_a_res;int64_builder.Finish(&array_a_res);return array_a_res;}
};arrow::Status ArrowUtil::read_csv(char const* file_name, std::shared_ptr<arrow::Table>& tb) {ARROW_ASSIGN_OR_RAISE(auto input_file,arrow::io::ReadableFile::Open(file_name));ARROW_ASSIGN_OR_RAISE(auto csv_reader,arrow::csv::TableReader::Make(arrow::io::default_io_context(), input_file,arrow::csv::ReadOptions::Defaults(),arrow::csv::ParseOptions::Defaults(),arrow::csv::ConvertOptions::Defaults()));ARROW_ASSIGN_OR_RAISE(auto table, csv_reader->Read());tb = table;return arrow::Status::OK();
}arrow::Status ArrowUtil::read_ipc(char const* file_name, std::shared_ptr<arrow::Table>& tb) {ARROW_ASSIGN_OR_RAISE(auto input_file,arrow::io::ReadableFile::Open(file_name));ARROW_ASSIGN_OR_RAISE(auto ipc_reader, arrow::ipc::RecordBatchFileReader::Open(input_file));std::vector<std::shared_ptr<arrow::RecordBatch>> batches;batches.reserve(ipc_reader->num_record_batches());for (int i = 0; i < ipc_reader->num_record_batches(); ++i) {ARROW_ASSIGN_OR_RAISE(auto a_record, ipc_reader->ReadRecordBatch(i));batches.emplace_back(std::move(a_record));}arrow::Table::FromRecordBatches(ipc_reader->schema(), std::move(batches)).Value(&tb);return arrow::Status::OK();
}arrow::Status ArrowUtil::read_parquet(char const* file_name, std::shared_ptr<arrow::Table>& tb) {std::shared_ptr<arrow::io::ReadableFile> infile;PARQUET_ASSIGN_OR_THROW(infile,arrow::io::ReadableFile::Open(file_name,arrow::default_memory_pool()));std::unique_ptr<parquet::arrow::FileReader> reader;PARQUET_THROW_NOT_OK(parquet::arrow::OpenFile(infile, arrow::default_memory_pool(), &reader));std::shared_ptr<arrow::Table> table;PARQUET_THROW_NOT_OK(reader->ReadTable(&table));tb = table;return arrow::Status::OK();
}arrow::Status ArrowUtil::read_json(char const* file_name, std::shared_ptr<arrow::Table>& tb) {std::shared_ptr<arrow::io::ReadableFile> infile;PARQUET_ASSIGN_OR_THROW(infile,arrow::io::ReadableFile::Open(file_name,arrow::default_memory_pool()));ARROW_ASSIGN_OR_RAISE(auto reader, arrow::json::TableReader::Make(arrow::default_memory_pool(), infile, arrow::json::ReadOptions::Defaults(), arrow::json::ParseOptions::Defaults()));ARROW_ASSIGN_OR_RAISE(auto res_tb, reader->Read());tb = res_tb;return arrow::Status::OK();
}arrow::Status ArrowUtil::write_ipc(arrow::Table const& tb, char const* file_name) {ARROW_ASSIGN_OR_RAISE(auto output_file,arrow::io::FileOutputStream::Open(file_name));ARROW_ASSIGN_OR_RAISE(auto batch_writer,arrow::ipc::MakeFileWriter(output_file, tb.schema()));ARROW_RETURN_NOT_OK(batch_writer->WriteTable(tb));ARROW_RETURN_NOT_OK(batch_writer->Close());return arrow::Status::OK();
}arrow::Status ArrowUtil::write_parquet(arrow::Table const& tb, char const* file_name) {std::shared_ptr<arrow::io::FileOutputStream> outfile;PARQUET_ASSIGN_OR_THROW(outfile, arrow::io::FileOutputStream::Open(file_name));// The last argument to the function call is the size of the RowGroup in// the parquet file. Normally you would choose this to be rather large but// for the example, we use a small value to have multiple RowGroups.PARQUET_THROW_NOT_OK(parquet::arrow::WriteTable(tb, arrow::default_memory_pool(), outfile, 3));return arrow::Status::OK();
}void testReadCSV() {// 读取CSV文件char const* csv_path = "./test.csv";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_csv(csv_path, tb);auto const& tb_ = *tb;arrow::PrettyPrint(tb_, {}, &std::cerr);assert(tb_.num_rows() == 2);
}void testWriteIpc() {// 读取CSV文件并写入IPC文件char const* csv_path = "./test.csv";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_csv(csv_path, tb);auto const& tb_ = *tb;char const* write_csv_path = "./test_dst.arrow";arrow::PrettyPrint(tb_, {}, &std::cerr);auto write_res = ArrowUtil::write_ipc(tb_, write_csv_path);assert(write_res == arrow::Status::OK());
}void testReadIPC() {// 读取Arrow IPC 文件char const* ipc_path = "./test_dst.arrow";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_ipc(ipc_path, tb);auto const& tb_ = *tb;arrow::PrettyPrint(tb_, {}, &std::cerr);assert(tb_.num_rows() == 2);
}void testWriteParquet() {// 写入Parquet文件char const* csv_path = "./test.csv";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_csv(csv_path, tb);auto const& tb_ = *tb;char const* write_parquet_path = "./test_dst.parquet";arrow::PrettyPrint(tb_, {}, &std::cerr);auto write_res = ArrowUtil::write_parquet(tb_, write_parquet_path);assert(write_res == arrow::Status::OK());
}void testReadParquet() {// 读取 Parquetchar const* parquet_path = "./test_dst.parquet";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_parquet(parquet_path, tb);auto const& tb_ = *tb;arrow::PrettyPrint(tb_, {}, &std::cerr);assert(tb_.num_rows() == 2);
}void testReadJson() {// 读取Json文件char const* json_path = "./test.json";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_json(json_path, tb);auto const& tb_ = *tb;arrow::PrettyPrint(tb_, {}, &std::cerr);assert(tb_.num_rows() == 2);
}void testComputeGreater() {// 比较两列 int 值中 int1 > int2的值, greater函数char const* json_path = "./comp_gt.csv";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_csv(json_path, tb);auto const& tb_ = *tb;arrow::PrettyPrint(tb_, {}, &std::cerr);auto array_a = tb_.GetColumnByName("int1");auto array_b = tb_.GetColumnByName("int2");auto array_a_res = ArrowUtil::chunked_array_to_array<int64_t, numbuildT<arrow::Int64Type>, arrow::Int64Array>(array_a);auto array_b_res = ArrowUtil::chunked_array_to_array<int64_t, numbuildT<arrow::Int64Type>, arrow::Int64Array>(array_b);auto compared_datum = arrow::compute::CallFunction("greater", { array_a_res, array_b_res });auto array_a_gt_b_compute = compared_datum->make_array();arrow::PrettyPrint(*array_a_gt_b_compute, {}, &std::cerr);auto schema =arrow::schema({ arrow::field("int1", arrow::int64()), arrow::field("int2", arrow::int64()),arrow::field("a>b? (arrow)", arrow::boolean()) });std::shared_ptr<arrow::Table> my_table = arrow::Table::Make(schema, { array_a_res, array_b_res, array_a_gt_b_compute }, tb_.num_rows());arrow::PrettyPrint(*my_table, {}, &std::cerr);
}void testComputeMinMax() {// 计算int1列的最大值和最小值char const* json_path = "./comp_gt.csv";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_csv(json_path, tb);auto const& tb_ = *tb;arrow::PrettyPrint(tb_, {}, &std::cerr);auto array_a = tb_.GetColumnByName("int1");auto array_a_res = ArrowUtil::chunked_array_to_array<int64_t, numbuildT<arrow::Int64Type>, arrow::Int64Array>(array_a);arrow::compute::ScalarAggregateOptions scalar_aggregate_options;scalar_aggregate_options.skip_nulls = false;auto min_max = arrow::compute::CallFunction("min_max", { array_a_res }, &scalar_aggregate_options);// Unpack struct scalar result (a two-field {"min", "max"} scalar)auto min_value = min_max->scalar_as<arrow::StructScalar>().value[0];auto max_value = min_max->scalar_as<arrow::StructScalar>().value[1];assert(min_value->ToString() == "1");assert(max_value->ToString() == "8");
}#define GTEST_TEST(a, b) void a##_##b()
#define ASSERT_EQ(a, b) assert(a == b)GTEST_TEST(RWTests, ComputeMean) {// 计算int1列的平均值char const* json_path = "../data/comp_gt.csv";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_csv(json_path, tb);auto const& tb_ = *tb;arrow::PrettyPrint(tb_, {}, &std::cerr);auto array_a = tb_.GetColumnByName("int1");auto array_a_res = ArrowUtil::chunked_array_to_array<int64_t, numbuildT<arrow::Int64Type>, arrow::Int64Array>(array_a);arrow::compute::ScalarAggregateOptions scalar_aggregate_options;scalar_aggregate_options.skip_nulls = false;auto mean = arrow::compute::CallFunction("mean", { array_a_res }, &scalar_aggregate_options);auto const& mean_value = mean->scalar_as<arrow::Scalar>();ASSERT_EQ(mean_value.ToString(), "4.5");
}GTEST_TEST(RWTests, ComputeAdd) {// 将第一列的值加3char const* json_path = "../data/comp_gt.csv";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_csv(json_path, tb);auto const& tb_ = *tb;arrow::PrettyPrint(tb_, {}, &std::cerr);auto array_a = tb_.GetColumnByName("int1");auto array_a_res = ArrowUtil::chunked_array_to_array<int64_t, numbuildT<arrow::Int64Type>, arrow::Int64Array>(array_a);arrow::compute::ScalarAggregateOptions scalar_aggregate_options;scalar_aggregate_options.skip_nulls = false;std::shared_ptr<arrow::Scalar> increment = std::make_shared<arrow::Int64Scalar>(3);auto add = arrow::compute::CallFunction("add", { array_a_res, increment }, &scalar_aggregate_options);std::shared_ptr<arrow::Array> incremented_array = add->array_as<arrow::Array>();arrow::PrettyPrint(*incremented_array, {}, &std::cerr);
}GTEST_TEST(RWTests, ComputeAddArray) {// int1和int2两列相加char const* json_path = "../data/comp_gt.csv";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_csv(json_path, tb);auto const& tb_ = *tb;arrow::PrettyPrint(tb_, {}, &std::cerr);auto array_a = tb_.GetColumnByName("int1");auto array_a_res = ArrowUtil::chunked_array_to_array<int64_t, numbuildT<arrow::Int64Type>, arrow::Int64Array>(array_a);auto array_b = tb_.GetColumnByName("int2");auto array_b_res = ArrowUtil::chunked_array_to_array<int64_t, numbuildT<arrow::Int64Type>, arrow::Int64Array>(array_b);arrow::compute::ScalarAggregateOptions scalar_aggregate_options;scalar_aggregate_options.skip_nulls = false;auto add = arrow::compute::CallFunction("add", { array_a_res, array_b_res }, &scalar_aggregate_options);std::shared_ptr<arrow::Array> incremented_array = add->array_as<arrow::Array>();arrow::PrettyPrint(*incremented_array, {}, &std::cerr);
}GTEST_TEST(RWTests, ComputeStringEqual) {// 比较s1和s2两列是否相等char const* json_path = "../data/comp_s_eq.csv";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_csv(json_path, tb);auto const& tb_ = *tb;arrow::PrettyPrint(tb_, {}, &std::cerr);auto array_a = tb_.GetColumnByName("s1");auto array_a_res = ArrowUtil::chunked_array_to_str_array(array_a);auto array_b = tb_.GetColumnByName("s2");auto array_b_res = ArrowUtil::chunked_array_to_str_array(array_b);arrow::compute::ScalarAggregateOptions scalar_aggregate_options;scalar_aggregate_options.skip_nulls = false;auto eq_ = arrow::compute::CallFunction("equal", { array_a_res, array_b_res }, &scalar_aggregate_options);std::shared_ptr<arrow::Array> eq_array = eq_->array_as<arrow::Array>();arrow::PrettyPrint(*eq_array, {}, &std::cerr);
}GTEST_TEST(RWTests, ComputeCustom) {// 自己写算法逐个比较相等 char const* json_path = "../data/comp_s_eq.csv";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_csv(json_path, tb);auto const& tb_ = *tb;arrow::PrettyPrint(tb_, {}, &std::cerr);auto arr1 = tb_.GetColumnByName("s1");auto arr2 = tb_.GetColumnByName("s2");auto v1 = ArrowUtil::chunked_array_to_str_vector(arr1);auto v2 = ArrowUtil::chunked_array_to_str_vector(arr2);for (std::size_t i = 0; i < v1.size(); ++i) {if (v1[i] != v2[i]) {std::cerr << v1[i] << "!=" << v2[i] << "\n";}}
}GTEST_TEST(RWTests, ComputeCustomDbl) {// 自己写算法比较double值char const* json_path = "../data/custom_dbl.csv";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_csv(json_path, tb);auto const& tb_ = *tb;arrow::PrettyPrint(tb_, {}, &std::cerr);auto arr1 = tb_.GetColumnByName("dbl1");auto arr2 = tb_.GetColumnByName("dbl2");auto v1 = ArrowUtil::chunked_array_to_vector<double, arrow::DoubleArray>(arr1);auto v2 = ArrowUtil::chunked_array_to_vector<double, arrow::DoubleArray>(arr2);for (std::size_t i = 0; i < v1.size(); ++i) {if (v1[i] != v2[i]) {std::cerr << v1[i] << "!=" << v2[i] << "\n";}}
}GTEST_TEST(RWTests, ComputeEqualDbl) {// 使用equal函数比较double值char const* json_path = "../data/custom_dbl.csv";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_csv(json_path, tb);auto const& tb_ = *tb;arrow::PrettyPrint(tb_, {}, &std::cerr);auto arr1 = tb_.GetColumnByName("dbl1");auto arr2 = tb_.GetColumnByName("dbl2");auto dbl_arr1 = ArrowUtil::chunked_array_to_array<double, numbuildT<arrow::DoubleType>, arrow::DoubleArray>(arr1);auto dbl_arr2 = ArrowUtil::chunked_array_to_array<double, numbuildT<arrow::DoubleType>, arrow::DoubleArray>(arr2);arrow::compute::ScalarAggregateOptions scalar_aggregate_options;scalar_aggregate_options.skip_nulls = false;auto eq_ = arrow::compute::CallFunction("equal", { dbl_arr1, dbl_arr2 }, &scalar_aggregate_options);std::shared_ptr<arrow::Array> eq_array = eq_->array_as<arrow::Array>();arrow::PrettyPrint(*eq_array, {}, &std::cerr);
}GTEST_TEST(RWTests, StrStartsWith) {// 计算s1列以是否以 Zha开头的值char const* json_path = "../data/comp_s_eq.csv";std::shared_ptr<arrow::Table> tb;ArrowUtil::read_csv(json_path, tb);auto const& tb_ = *tb;arrow::PrettyPrint(tb_, {}, &std::cerr);auto array_a = tb_.GetColumnByName("s1");auto array_a_res = ArrowUtil::chunked_array_to_str_array(array_a);arrow::compute::MatchSubstringOptions options("Zha");auto eq_ = arrow::compute::CallFunction("starts_with", { array_a_res }, &options);std::shared_ptr<arrow::Array> eq_array = eq_->array_as<arrow::Array>();arrow::PrettyPrint(*eq_array, {}, &std::cerr);
}using arrow::Int32Builder;
using arrow::Int64Builder;
using arrow::DoubleBuilder;
using arrow::StringBuilder;struct row_data {int32_t col1;int64_t col2;double col3;std::string col4;
};//行结构#define EXIT_ON_FAILURE(expr)                      \do {                                             \arrow::Status status_ = (expr);                \if (!status_.ok()) {                           \std::cerr << status_.message() << std::endl; \return EXIT_FAILURE;                         \}                                              \} while (0);arrow::Status CreateTable(const std::vector<struct row_data>& rows, std::shared_ptr<arrow::Table>* table) {//使用arrow::jemalloc::MemoryPool::default_pool()构建器更有效,因为这可以适当增加底层内存区域的大小.arrow::MemoryPool* pool = arrow::default_memory_pool();Int32Builder col1_builder(pool);Int64Builder col2_builder(pool);DoubleBuilder col3_builder(pool);StringBuilder col4_builder(pool);//现在我们可以循环我们现有的数据,并将其插入到构建器中。这里的' Append '调用可能会失败(例如,我们无法分配足够的额外内存)。因此我们需要检查它们的返回值。for (const row_data& row : rows) {ARROW_RETURN_NOT_OK(col1_builder.Append(row.col1));ARROW_RETURN_NOT_OK(col2_builder.Append(row.col2));ARROW_RETURN_NOT_OK(col3_builder.Append(row.col3));ARROW_RETURN_NOT_OK(col4_builder.Append(row.col4));}//添加空值,末尾值的元素为空ARROW_RETURN_NOT_OK(col1_builder.AppendNull());ARROW_RETURN_NOT_OK(col2_builder.AppendNull());ARROW_RETURN_NOT_OK(col3_builder.AppendNull());ARROW_RETURN_NOT_OK(col4_builder.AppendNull());std::shared_ptr<arrow::Array> col1_array;ARROW_RETURN_NOT_OK(col1_builder.Finish(&col1_array));std::shared_ptr<arrow::Array> col2_array;ARROW_RETURN_NOT_OK(col2_builder.Finish(&col2_array));std::shared_ptr<arrow::Array> col3_array;ARROW_RETURN_NOT_OK(col3_builder.Finish(&col3_array));std::shared_ptr<arrow::Array> col4_array;ARROW_RETURN_NOT_OK(col4_builder.Finish(&col4_array));std::vector<std::shared_ptr<arrow::Field>> schema_vector = {arrow::field("col1", arrow::int32()), arrow::field("col2", arrow::int64()), arrow::field("col3", arrow::float64()),arrow::field("col4", arrow::utf8()) };auto schema = std::make_shared<arrow::Schema>(schema_vector);//最终的' table '变量是我们可以传递给其他可以使用Apache Arrow内存结构的函数的变量。这个对象拥有所有引用数据的所有权,//因此一旦我们离开构建表及其底层数组的函数的作用域,就不必关心未定义的引用。*table = arrow::Table::Make(schema, { col1_array, col2_array, col3_array,col4_array });return arrow::Status::OK();
}arrow::Status TableToVector(const std::shared_ptr<arrow::Table>& table,std::vector<struct row_data>* rows) {//检查表结构是否一致std::vector<std::shared_ptr<arrow::Field>> schema_vector = {arrow::field("col1", arrow::int32()), arrow::field("col2", arrow::int64()), arrow::field("col3", arrow::float64()),arrow::field("col4", arrow::utf8()) };auto expected_schema = std::make_shared<arrow::Schema>(schema_vector);if (!expected_schema->Equals(*table->schema())) {// The table doesn't have the expected schema thus we cannot directly// convert it to our target representation.return arrow::Status::Invalid("Schemas are not matching!");}//获取对应列数据指针auto col1s =std::static_pointer_cast<arrow::Int32Array>(table->column(0)->chunk(0));auto col2s =std::static_pointer_cast<arrow::Int64Array>(table->column(1)->chunk(0));auto col3s =std::static_pointer_cast<arrow::DoubleArray>(table->column(2)->chunk(0));auto col4s =std::static_pointer_cast<arrow::StringArray>(table->column(3)->chunk(0));for (int64_t i = 0; i < table->num_rows(); i++) {if (col1s->IsNull(i)) {assert(i == 3);//第四行为null}else {int32_t col1 = col1s->Value(i);int64_t col2 = col2s->Value(i);double col3 = col3s->Value(i);std::string col4 = col4s->GetString(i);rows->push_back({ col1, col2, col3,col4 });}}return arrow::Status::OK();
}// 行数组和列数组相互转换
int testTableConvertSTL() {//行数组std::vector<row_data> rows = {{1, 11,1.0, "John"}, {2, 22,2.0, "Tom"}, {3,33, 3.0,"Susan"} };std::shared_ptr<arrow::Table> table;EXIT_ON_FAILURE(CreateTable(rows, &table));std::vector<row_data> expected_rows;EXIT_ON_FAILURE(TableToVector(table, &expected_rows));std::cout << expected_rows.size() << std::endl;assert(rows.size() == expected_rows.size());return 0;
}void test() {// 构建一个int8数组arrow::Int8Builder builder;arrow::Int16Builder int16builder;int8_t days_raw[5] = { 1, 12, 17, 23, 28 };int8_t months_raw[5] = { 1, 3, 5, 7, 1 };int16_t years_raw[5] = { 1990, 2000, 1995, 2000, 1995 };builder.AppendValues(days_raw, 5);std::shared_ptr<arrow::Array> days = builder.Finish().MoveValueUnsafe();    builder.AppendValues(months_raw, 5);std::shared_ptr<arrow::Array> months = builder.Finish().MoveValueUnsafe();    int16builder.AppendValues(years_raw, 5);std::shared_ptr<arrow::Array> years = int16builder.Finish().MoveValueUnsafe();// Schema 自定义table// Now, we want a RecordBatch, which has columns and labels for said columns.// This gets us to the 2d data structures we want in Arrow.// These are defined by schema, which have fields -- here we get both those object types// ready.std::shared_ptr<arrow::Field> field_day, field_month, field_year;std::shared_ptr<arrow::Schema> schema;// Every field needs its name and data type.field_day = arrow::field("Day", arrow::int8());field_month = arrow::field("Month", arrow::int8());field_year = arrow::field("Year", arrow::int16());// The schema can be built from a vector of fields, and we do so here.schema = arrow::schema({ field_day, field_month, field_year });// 打印// With the schema and Arrays full of data, we can make our RecordBatch! Here,// each column is internally contiguous. This is in opposition to Tables, which we'll// see next.std::shared_ptr<arrow::RecordBatch> rbatch;// The RecordBatch needs the schema, length for columns, which all must match,// and the actual data itself.rbatch = arrow::RecordBatch::Make(schema, days->length(), { days, months, years });std::cout << rbatch->ToString();/*Day:   [1,12,17,23,28]Month:   [1,3,5,7,1]Year:   [1990,2000,1995,2000,1995]*/// stl vector容器arrow::ArrayVector day_vecs{days};std::shared_ptr<arrow::ChunkedArray> day_chunks =std::make_shared<arrow::ChunkedArray>(day_vecs);testTableConvertSTL();testReadCSV();/*col1: stringcol2: stringcol3: string----col1:[["val1","val1"]]col2:[["val2","val2"]]col3:[["val3","val3"]]*/testWriteIpc();testReadIPC();//testComputeGreater();//testComputeMinMax();
}

Compute Functions — Apache Arrow v17.0.0

GitHub - apache/arrow: Apache Arrow is a multi-language toolbox for accelerated data interchange and in-memory processing


创作不易,小小的支持一下吧!


http://www.ppmy.cn/news/1503584.html

相关文章

Java中的BIO,NIO与操作系统IO模型的区分

Java中的IO模型 Java中的BIO&#xff0c;NIO&#xff0c;AIO概念可以是针对输入输出流&#xff0c;文件&#xff0c;和网络编程等其他IO操作的。 但是主要还是在网络编程通信过程中比较重要&#xff0c;因为很多情况网络编程需要它们来提供更好的性能。 所以本篇文章偏向于网络…

java~反射

反射 使用的前提条件&#xff1a;必须先得到代表的字节码的Class&#xff0c;Class类用于表示.class文件&#xff08;字节码&#xff09; 原理图 加载完类后&#xff0c;在堆中就产生了一个Class类型的对象&#xff08;一个类只有一个Class对象&#xff09;&#xff0c;这个对…

Kotlin中的Any 类详解

Kotlin 中的 ANY 类详解 在 Kotlin 中&#xff0c;Any 类是 Kotlin 类继承层次结构的根。每个 Kotlin 类都继承自 Any。它等同于 Java 中的 Object&#xff0c;但有一些关键差异和额外的功能。 Kotlin 中 Any 的关键点 继承&#xff1a; Kotlin 中的每个类都直接或间接地继承自…

嵌入式C++、ROS 、OpenCV、SLAM 算法和路径规划算法:自主导航的移动机器人流程设计(代码示例)

在当今科技迅速发展的背景下&#xff0c;嵌入式自主移动机器人以其广泛的应用前景和技术挑战吸引了越来越多的研究者和开发者。本文将详细介绍一个嵌入式自主移动机器人项目&#xff0c;涵盖其硬件与软件系统设计、代码实现及项目总结&#xff0c;并提供相关参考文献。 项目概…

Android 10.0 Launcher 启动流程

在前面SystemUI启动流程中说到&#xff0c;在SystemServer中会去启动各种系统服务&#xff0c;这里的launcher也是启动的其中一个服务ActivityManagerService去启动的。在android10之前&#xff0c;系统四大组件的启动都是在ActivityManagerService中&#xff0c;在android10中…

【Cadence19】如何由PCB导出symbol器件PCB封装

建议将封装导出到新文件夹命名Temp 【注意】需要提醒的是&#xff1a;Cadence文件夹命名不要有中文&#xff01;&#xff01;&#xff01;

Python面试题:结合Python技术,如何使用Scrapy构建爬虫框架

Scrapy 是一个强大的 Python 爬虫框架&#xff0c;适用于大规模的网页数据抓取。它提供了许多内置的功能来简化爬虫开发。下面我们介绍如何使用 Scrapy 构建爬虫框架&#xff0c;包括安装、创建项目、定义爬虫和数据提取等步骤。 安装 Scrapy 首先&#xff0c;确保你已经安装…

百度Go实习复盘

1.键入url渲染页面的过程 2.TCP三次握手是怎样实现的&#xff1f;为什么需要三次握手&#xff1f; 3.四次挥手呢&#xff1f; 4.MySQL的事务 5.事务的回滚是如何实现的&#xff1f; 6.MySQL的索引的适用范围 7.在MySQL中如何使用索引&#xff1f; 8.如何查询语句的索引情…