1D/2D/3D卷积详解

news/2024/11/23 2:35:04/

目录

    • 概述
    • 1D卷积
    • 2D卷积
    • 3D卷积

概述

1D/2D/3D卷积计算方式都是一样的,其中2D卷积应用范围最广。与全连接层相比,卷积层的主要优点是参数共享和稀疏连接,这使得卷积操作所需要学习的参数数量大大减少。卷积计算方式如下:
在这里插入图片描述

1D卷积

在这里插入图片描述
计算方式

1、图中的输入的数据维度为8,过滤器的维度为5。与二维卷积类似,卷积后输出的数据维度为8−5+1=4。

2、如果过滤器数量仍为1,输入数据的channel数量变为16,即输入数据维度为8×16。这里channel的概念相当于自然语言处理中的embedding,而该输入数据代表8个单词,其中每个单词的词向量维度大小为16。在这种情况下,过滤器的维度由5变为5×16,最终输出的数据维度仍为4。

3、如果过滤器数量为n,那么输出的数据维度就变为4×n。

应用领域

一维卷积常用于序列模型,自然语言处理领域

2D卷积

在这里插入图片描述
计算方式

1、图中的输入的数据维度为14×14,过滤器大小为5×5,二者做卷积,输出的数据维度为10×10(14−5+1=10)。

2、上述内容没有引入channel的概念,也可以说channel的数量为1。如果将二维卷积中输入的channel的数量变为3,即输入的数据维度变为(14×14×3)。由于卷积操作中过滤器的channel数量必须与输入数据的channel数量相同,过滤器大小也变为5×5×3。在卷积的过程中,过滤器与数据在channel方向分别卷积,之后将卷积后的数值相加,即执行10×10次3个数值相加的操作,最终输出的数据维度为10×10。

3、以上都是在过滤器数量为1的情况下所进行的讨论。如果将过滤器的数量增加至16,即16个大小为10×10×3的过滤器,最终输出的数据维度就变为10×10×16。可以理解为分别执行每个过滤器的卷积操作,最后将每个卷积的输出在第三个维度(channel 维度)上进行拼接。

应用领域

二维卷积常用于计算机视觉、图像处理领域

3D卷积

在这里插入图片描述
计算方式

1、假设输入数据的大小为a1×a2×a3,channel数为c,过滤器大小为f×f×f×c(一般不写channel的维度),过滤器数量为n。

2、基于上述情况,三维卷积最终的输出为(a1−f+1)×(a2−f+1)×(a3−f+1)×n。

应用领域

三维卷积常用于医学领域(CT影响),视频处理领域(检测动作及人物行为)


http://www.ppmy.cn/news/149126.html

相关文章

3D Instances as 1D Kernels

Abstract 我们引入了一种3D实例表示,称为实例内核,其中实例由一维向量表示,这些向量对3D实例的语义、位置和形状信息进行编码。我们表明,实例内核通过简单地扫描整个内核来实现简单的mask推断场景,避免严重依赖标准3D实例分割管道中的proposals或启发式聚类算法。实例内核…

理解1D、2D、3D卷积神经网络的概念

目录 引言二维CNN | Conv2D一维CNN | Conv1D三维CNN | Conv3D总结 引言 当我们说卷积神经网络(CNN)时,通常是指用于图像分类的二维CNN。但是,现实世界中还使用了其他两种类型的卷积神经网络,即1维CNN和3维CNN。在本指…

1D/1D动态规划

介绍 1 D / 1 D 1D/1D 1D/1D动态规划,就是指状态数为 O ( n ) O(n) O(n),转移为 O ( n ) O(n) O(n)的动态规划方程。一般的情况下求解的时间复杂度为 O ( n 2 ) O(n^2) O(n2),但是,通过优化可以使时间复杂度降到 O ( n l o g n ) …

深度学习之3D卷积神经网络

一、概述 3D CNN主要运用在视频分类、动作识别等领域,它是在2D CNN的基础上改变而来。由于2D CNN不能很好的捕获时序上的信息,因此我们采用3D CNN,这样就能将视频中时序信息进行很好的利用。首先我们介绍一下2D CNN与3D CNN的区别。如图1所示…

【一】1D测量 Measuring——meature_pairs()算子

😊😊😊欢迎来到本博客😊😊😊 🌟🌟🌟 Halcon算子太多,学习查找都没有系统的学习查找路径,本专栏主要分享Halcon各类算子含义及用法,有…

【一】1D测量 Measuring——measure_pos()算子

😊😊😊欢迎来到本博客😊😊😊 🌟🌟🌟 Halcon算子太多,学习查找都没有系统的学习查找路径,本专栏主要分享Halcon各类算子含义及用法,有…

基于卡尔曼滤波实现线性目标跟踪

文章目录 前言卡尔曼滤波基本推导运算 实现目标检测卡尔曼预测器ID分配器(跟踪器) 完整代码代码总结 前言 一个需求,在一个稳定的场景当中,实现目标检测计数算法。 任务点: 实现目标检测完成对不同类别的物品进行计数…

用于函数优化的一维 (1D) 测试函数

【翻译自 : One-Dimensional (1D) Test Functions for Function Optimization】 【说明:Jason Brownlee PhD大神的文章个人很喜欢,所以闲暇时间里会做一点翻译和学习实践的工作,这里是相应工作的实践记录,希望能帮到有…