周报(1)<仅供自己学习>

news/2024/12/22 21:25:06/

文章目录

  • 一.pytorch学习
    • 1.配置GPU
    • 2.数据读取
      • 问题1(已解决
      • 问题2(已解决
    • 3.卷积的学习
  • 二.NeRF学习
    • 1.介绍部分
      • 问题1(已解决
    • 2.神经辐射场表示
      • 问题2(已解决
      • 问题3(已解决
      • 问题4(已解决
      • 问题5:什么是视图依赖(已解决
    • 3.体渲染部分
      • 问题1:体积密度到底是什么?(已解决
      • 问题2:体渲染第一个积分公式的理解(已解决
      • 问题3:分层抽样(已解决
      • 问题4:位置编码

一.pytorch学习

1.配置GPU

os.environ[‘CUDA_VISIBLE_DEVICE’]=0’    xxx.cuda()
device=torch.device[‘cuda:1if torch cuda is avilable()else ‘cpu’]
xxx.to_device(device)

2.数据读取

问题1(已解决

问题:为什么要先转换为PIL?
PIL可以调整尺寸并且转化为ToTensor

data_transform=transform.Compose([transforms.ToPILimage(),transform.Resize(size),transform.ToTensor()])
#官方读取:
train_data=datasets.FashionMNST(root=./,train=True,download=True,tramsfrom=data_transform)
csv:
def __init__(self,df,transform=None)
self.df=df
self.transform=transform:
#图像简单处理
self.images=df.iloc[:,1:].values.astype(np.uint8)
self.labels=df.iloc[:,0:1].values
def __len__:
return len(self.images)
def __getitem__(self,idx):
image=self.images[idx].reshape(28,28,1)
label=int(self.labels[idx])
if self.transform is not None:
image=self.transform(image)
else:
image=torch.tensor(image)
lable=torch.tensor(lable,dytpe=torch.long)
return image,lable

问题2(已解决

问题:为什么要转换为int?
原本是字符串

3.卷积的学习

卷积的目的:特征划分之后提取最有用的特征,使得特征减少。

#模型构造
class CNN(nn.Module)
##初始化
def __init__(self):
super(CNN,self).__init__():
self.conv(个人属性)=nn.Sequential(
nn.Conv2d(1,32,5),
nn.RuLu(),
nn.MaxPool2d(2,stride=2)
nn.Conv2d(32,64,5),
nn.RuLu(),
nn.MaxPool2d(2,stride=2)
nn.Droput(0.3)
)
self.fn=nn.Sequential(
nn.Linear(64*4*4,512)
nn.ReLu()
nn.Linear(512,10)
)
##前向传播函数
def forward(self,x):
x=self.conv(x)
x=x.view(-1,64*4*4)
x=self.fc(x)
return x
##准确率函数
def accuracy(predictions,labels):
pred=torch.max(predictions.data,1)[1]
rights=pred.eq(labels.data.view_as(pred)).sum()
return rights,len(labels)
##实例化
net=CNN()
##损失函数
criterion=nn.CrossEntropyLoss()
##优化器(怎么实现的?)
optimizer=optim.Adam(net.parameters(),lr=0.001)
for epoch in range(num_epochs):
train_rights=[]
for batch_idx,(data,target) in enumerate(train_loader):	
net.train()
output=net(data)
loss=criterion(output,target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
right=accuracy(output,target)
train_rights.append()net.eval()(评估模式)

二.NeRF学习

  1. 学会了NeRF的输入输出以及NeRF的过程

1.介绍部分

问题1(已解决

已知相机姿态的图像?相机姿态也就是指的是两个观察角么?
可以获得获取到相机位置和方向信息的图片

2.神经辐射场表示

问题2(已解决

1.5D函数是什么(不是一组5D点么,怎么会有函数)?
2.文中所说可以通过相机光线获得一组3D点,再根据两个观察方向输入神经网络(这两个观察方向怎么确定的?)
3.两个观察方向就可以确定相机光线的位置么?

两个观察方向决定:光线从相机射向场景中某一点的方向,其中θ表示与z轴的夹角(俯仰角),而φ表示与x-y平面的夹角(极坐标)
这里的“5D函数”实际上是指一个将5D坐标映射到输出值(颜色和密度)的数学模型
这个就是5D函数

问题3(已解决

x和d是什么玩意F是什么玩意?
x是空间坐标,d是两个方位角

问题4(已解决

怎么限制两个相关
(构建MLP体现了)

问题5:什么是视图依赖(已解决

不仅考虑像素空间位置还会考虑观察者的方向
体现在这个公式d就是观察方向

3.体渲染部分

问题1:体积密度到底是什么?(已解决

文中说是射线在位置 x 处终止于无穷小粒子的微分概率。

可以理解为σ(x) 指的是在空间中位置 x 处单位体积对光线的阻挡能力

从数学上说

如果 σ(x) 很小,这意味着在位置 x 的单位体积内粒子较少,射线穿过这个体积而没有被终止的概率较高。
如果 σ(x) 很大,这意味着在位置 x 的单位体积内粒子较多,射线穿过这个体积时被终止的概率较高。

问题2:体渲染第一个积分公式的理解(已解决

第一种思想:
参考了这篇文章
可以联系Max文章
结合了两种模型,发射模型和吸收模型

解出

根据文章内容写出该项是背景光所以约去(NeRF文章中不考虑背景光)
为什么是背景光?
我的理解可能是那些从介质外部进入并穿过介质到达观察者的光。这部分光可能来自于远处的光源,如太阳,或者是场景中的其他照明。
最终

第二种思想:

T(s)表示从s=0点到s=s点光没有被遮挡的概率,是一个积累量,感觉类似与光线在每个位置的权重
乘上体积密度和颜色值积累就可以表现出反应了物体的反射,吸收等光效应的光点。
T(s+ds)=T(s)(1-体积密度*ds)体积密度是概率密度函数。

问题3:分层抽样(已解决

抽出一份Ci


抽出的一份认为体积密度和颜色值不变
将T值拆解
化简得到:


将T(0->tn)拆解就是
T(0->tn)=(1-a0)(1-a2)…(1-an-1)

问题4:位置编码


http://www.ppmy.cn/news/1475690.html

相关文章

2 Java的基本程序设计结构(基本语法1)

文章目录 前言一、数据类型0 与Python的一些区别1 基本数据类型(1)整型(2)浮点数类型(3)字符(char)类型(4)布尔类型(true、false)(5)代码示例2 引用数据类型二、变量与常量1 变量2 常量(*)3 枚举类型变量(*)4 变量的作用域三、变量和类起名规范1 硬性要求(变量…

Jmeter常用组件及执行顺序

一 常用组件 1.线程组 Thread Group 线程组是一系列线程的集合,每一个线程代表着一个正在使用应用程序的用户。在 jmeter 中,每个线程意味着模拟一个真实用户向服务器发起请求。 在 jmeter 中,线程组组件运行用户设置线程数量、初始化方式等…

golang json反序列化科学计数法的坑

问题背景 func CheckSign(c *gin.Context, signKey string, singExpire int) (string, error) {r : c.Requestvar formParams map[string]interface{}if c.Request.Body ! nil {bodyBytes, _ : io.ReadAll(c.Request.Body)defer c.Request.Body.Close()if len(bodyBytes) >…

蝙蝠避障:为盲人出行插上科技的翅膀

在这个五彩斑斓的世界里,每一步都充满了探索与惊喜。但对于我这样的视障者来说,每一次出行都是一场未知的冒险。我时常面临着难以想象的挑战:如何安全地穿越繁忙的街道,怎样准确地识别前方的障碍物,乃至简单地找到回家…

【机器翻译】基于术语词典干预的机器翻译挑战赛

文章目录 一、赛题链接二、安装库1.spacy2.torch_text 三、数据预处理赛题数据类定义 TranslationDataset批量处理函数 collate_fn 四、编码器和解码器Encoder 类Decoder 类Seq2Seq 类注意事项 五、主函数1. load_terminology_dictionary(dict_file)2. train(model, iterator, …

音频筑基:入门50问

音频筑基:入门50问 通用类编解码类 只问不答,意在启发。 通用类 为什么音频信号分析要从时域到频域?频域变换中,为啥要做TDAC时域混叠消除?人耳听觉频域敏感区是哪部分,为什么?人声发声频域重要…

Python酷库之旅-第三方库Pandas(023)

目录 一、用法精讲 58、pandas.isnull函数 58-1、语法 58-2、参数 58-3、功能 58-4、返回值 58-5、说明 58-6、用法 58-6-1、数据准备 58-6-2、代码示例 58-6-3、结果输出 59、pandas.notna函数 59-1、语法 59-2、参数 59-3、功能 59-4、返回值 59-5、说明 5…

Xcode依赖管理大师:精通项目依赖的艺术与实践

Xcode依赖管理大师:精通项目依赖的艺术与实践 在现代软件开发中,项目依赖管理是确保项目顺利进行的关键环节。Xcode,作为苹果官方的集成开发环境(IDE),提供了一套强大的工具来管理项目依赖。本文将深入探讨…