【机器翻译】基于术语词典干预的机器翻译挑战赛

news/2024/9/13 23:25:57/ 标签: 机器翻译, 人工智能, 自然语言处理

文章目录

    • 一、赛题链接
    • 二、安装库
      • 1.spacy
      • 2.torch_text
    • 三、数据预处理
        • 赛题数据
        • 类定义 `TranslationDataset`
        • 批量处理函数 `collate_fn`
    • 四、编码器和解码器
        • Encoder 类
        • Decoder 类
        • Seq2Seq 类
        • 注意事项
    • 五、主函数
        • 1. `load_terminology_dictionary(dict_file)`
        • 2. `train(model, iterator, optimizer, criterion, clip)`
    • 六、验证集的模型评价和测试集的模型推理

一、赛题链接

赛题链接:https://challenge.xfyun.cn/topic/info?type=machine-translation-2024

二、安装库

1.spacy

查看本地spacy版本

pip show spacy

我安装3.6.0

pip install en_core_web_sm-3.6.0.tar.gz

en_core_web_sm下载链接:https://github.com/explosion/spacy-models/releases

2.torch_text

!pip install torchtext

命令 !pip install torchtext 是一个在支持Jupyter Notebook或类似环境的Python解释器中使用的命令,用于安装或更新torchtext库。这个命令通过Python的包管理工具pip来执行。

!:这个符号在Jupyter Notebook、Google Colab等环境中用作前缀,允许你在代码单元中执行shell命令。这意呀着,紧跟在这个符号后面的命令将会作为shell命令执行,而不是Python代码。

torchtext是PyTorch生态系统中的一个库,它提供了一套用于处理自然语言和其他文本数据的工具,包括数据加载、预处理、词汇表构建和简单的文本分类等。

三、数据预处理

赛题数据
  • 训练集:双语数据 - 中英14万余双语句对
  • 开发集:英中1000双语句对
  • 测试集:英中1000双语句对
  • 术语词典:英中2226条
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchtext.data.utils import get_tokenizer
from collections import Counter
import random
from torch.utils.data import Subset, DataLoader
import time# 定义数据集类
# 修改TranslationDataset类以处理术语
class TranslationDataset(Dataset):def __init__(self, filename, terminology):self.data = []with open(filename, 'r', encoding='utf-8') as f:for line in f:en, zh = line.strip().split('\t')self.data.append((en, zh))self.terminology = terminology# 创建词汇表,注意这里需要确保术语词典中的词也被包含在词汇表中self.en_tokenizer = get_tokenizer('basic_english')self.zh_tokenizer = list  # 使用字符级分词en_vocab = Counter(self.terminology.keys())  # 确保术语在词汇表中zh_vocab = Counter()for en, zh in self.data:en_vocab.update(self.en_tokenizer(en))zh_vocab.update(self.zh_tokenizer(zh))# 添加术语到词汇表self.en_vocab = ['<pad>', '<sos>', '<eos>'] + list(self.terminology.keys()) + [word for word, _ in en_vocab.most_common(10000)]self.zh_vocab = ['<pad>', '<sos>', '<eos>'] + [word for word, _ in zh_vocab.most_common(10000)]self.en_word2idx = {word: idx for idx, word in enumerate(self.en_vocab)}self.zh_word2idx = {word: idx for idx, word in enumerate(self.zh_vocab)}def __len__(self):return len(self.data)def __getitem__(self, idx):en, zh = self.data[idx]en_tensor = torch.tensor([self.en_word2idx.get(word, self.en_word2idx['<sos>']) for word in self.en_tokenizer(en)] + [self.en_word2idx['<eos>']])zh_tensor = torch.tensor([self.zh_word2idx.get(word, self.zh_word2idx['<sos>']) for word in self.zh_tokenizer(zh)] + [self.zh_word2idx['<eos>']])return en_tensor, zh_tensordef collate_fn(batch):en_batch, zh_batch = [], []for en_item, zh_item in batch:en_batch.append(en_item)zh_batch.append(zh_item)# 对英文和中文序列分别进行填充en_batch = nn.utils.rnn.pad_sequence(en_batch, padding_value=0, batch_first=True)zh_batch = nn.utils.rnn.pad_sequence(zh_batch, padding_value=0, batch_first=True)return en_batch, zh_batch

这段代码定义了一个用于机器翻译任务的数据集类 TranslationDataset,它继承自 PyTorch 的 Dataset 类。这个类特别设计来处理包含英文和中文翻译对的文本文件,并且它还支持一个术语词典(terminology),以确保这些术语在构建词汇表时被优先考虑。下

类定义 TranslationDataset
  • 初始化方法 __init__:

    • 读取翻译文件(每行包含一个英文句子和一个中文句子,由制表符分隔)。
    • 初始化术语词典(terminology),这是一个字典。
    • 使用 get_tokenizer('basic_english') 获取英文的基本分词器。对于中文,这里简单地将整个句子视为一个字符序列(使用 list 作为分词器,实际上并不是真正的分词,但在这个示例中为了简化处理)。
    • 使用 Counter 计数英文术语、英文句子分词结果和中文句子分词结果(尽管中文这里按字符处理,但仍进行计数以便后续筛选高频词)。
    • 构建英文和中文的词汇表。首先添加特殊标记(<pad>, <sos>, <eos>),然后添加术语词典中的词,最后添加最常见的10000个英文和中文词(通过 most_common(10000) 获取)。
    • 创建词汇表到索引的映射(word2idx)。
  • 长度方法 __len__:

    • 返回数据集中翻译对的数量。
  • 获取项方法 __getitem__:

    • 根据索引 idx 获取数据集中的一个翻译对(英文和中文)。
    • 使用分词器将英文句子分词,并将每个词转换为索引。
    • 对于中文句子,由于这里按字符处理,直接将每个字符转换为索引。
    • 序列开始和结束标记:在序列两端添加<sos> (Sequence Start)和<eos> (Sequence End)标记,帮助模型识别序列的起始和结束。
    • 在英文和中文句子的末尾添加 <eos> 索引表示句子结束。
    • 返回英文和中文句子的索引张量。
批量处理函数 collate_fn
  • 这个函数用于在 DataLoader 中将多个样本组合成一个批次。
  • 它遍历批次中的每个英文和中文句子索引张量,并将它们分别收集到 en_batchzh_batch 中。
  • 使用 nn.utils.rnn.pad_sequence 对英文和中文句子批次进行填充,以确保批次中的每个句子都有相同的长度(较短的句子用0填充,即 <pad> 的索引)。这里设置 batch_first=True 表示批次维度是第一维。
  • 返回填充后的英文和中文句子批次。

四、编码器和解码器

class Encoder(nn.Module):def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout):super().__init__()self.embedding = nn.Embedding(input_dim, emb_dim)self.rnn = nn.GRU(emb_dim, hid_dim, n_layers, dropout=dropout, batch_first=True)self.dropout = nn.Dropout(dropout)def forward(self, src):# src shape: [batch_size, src_len]embedded = self.dropout(self.embedding(src))# embedded shape: [batch_size, src_len, emb_dim]outputs, hidden = self.rnn(embedded)# outputs shape: [batch_size, src_len, hid_dim]# hidden shape: [n_layers, batch_size, hid_dim]return outputs, hiddenclass Decoder(nn.Module):def __init__(self, output_dim, emb_dim, hid_dim, n_layers, dropout):super().__init__()self.output_dim = output_dimself.embedding = nn.Embedding(output_dim, emb_dim)self.rnn = nn.GRU(emb_dim, hid_dim, n_layers, dropout=dropout, batch_first=True)self.fc_out = nn.Linear(hid_dim, output_dim)self.dropout = nn.Dropout(dropout)def forward(self, input, hidden):# input shape: [batch_size, 1]# hidden shape: [n_layers, batch_size, hid_dim]embedded = self.dropout(self.embedding(input))# embedded shape: [batch_size, 1, emb_dim]output, hidden = self.rnn(embedded, hidden)# output shape: [batch_size, 1, hid_dim]# hidden shape: [n_layers, batch_size, hid_dim]prediction = self.fc_out(output.squeeze(1))# prediction shape: [batch_size, output_dim]return prediction, hiddenclass Seq2Seq(nn.Module):def __init__(self, encoder, decoder, device):super().__init__()self.encoder = encoderself.decoder = decoderself.device = devicedef forward(self, src, trg, teacher_forcing_ratio=0.5):# src shape: [batch_size, src_len]# trg shape: [batch_size, trg_len]batch_size = src.shape[0]trg_len = trg.shape[1]trg_vocab_size = self.decoder.output_dimoutputs = torch.zeros(batch_size, trg_len, trg_vocab_size).to(self.device)_, hidden = self.encoder(src)input = trg[:, 0].unsqueeze(1)  # Start tokenfor t in range(1, trg_len):output, hidden = self.decoder(input, hidden)outputs[:, t, :] = outputteacher_force = random.random() < teacher_forcing_ratiotop1 = output.argmax(1)input = trg[:, t].unsqueeze(1) if teacher_force else top1.unsqueeze(1)return outputs

上述代码实现了基于GRU(门控循环单元)的序列到序列(Seq2Seq)模型,该模型通常用于机器翻译、文本摘要等任务。代码由三个主要部分组成:Encoder 类、Decoder 类和 Seq2Seq 类。下面是对每个部分的详细解释:

Encoder 类
  • 初始化 (__init__): 接收输入维度(input_dim)、嵌入维度(emb_dim)、隐藏层维度(hid_dim)、层数(n_layers)和dropout比率(dropout)作为参数。构建了一个嵌入层(nn.Embedding)用于将输入转换为嵌入向量,一个GRU层(nn.GRU)用于处理序列数据,以及一个dropout层(nn.Dropout)用于减少过拟合。
  • 前向传播 (forward): 接收源序列(src)作为输入,首先通过嵌入层和dropout层,然后通过GRU层。返回GRU的输出和最终的隐藏状态。
Decoder 类
  • 初始化 (__init__): 类似于Encoder,但增加了一个全连接层(nn.Linear)用于将GRU的输出转换为预测的输出维度。
  • 前向传播 (forward): 接收目标序列的当前输入(input)和隐藏状态(hidden)作为输入。首先将输入通过嵌入层和dropout层,然后通过GRU层。最后,使用全连接层将GRU的输出转换为预测,并返回预测和更新后的隐藏状态。
Seq2Seq 类
  • 初始化 (__init__): 接收Encoder和Decoder实例以及设备(device)作为参数。这些实例和设备将用于模型的训练和推理。
  • 前向传播 (forward): 接收源序列(src)和目标序列(trg)作为输入,以及一个可选的教师强制比率(teacher_forcing_ratio)。首先,通过Encoder处理源序列以获取初始隐藏状态。然后,使用目标序列的第一个元素(通常是开始标记)作为Decoder的初始输入。在接下来的时间步中,Decoder根据当前输入和隐藏状态生成输出。根据教师强制比率,Decoder的下一个输入可以是目标序列的实际下一个元素(教师强制)或当前时间步的预测(非教师强制)。最后,返回所有时间步的预测输出。
注意事项
  • teacher_forcing_ratio用于在训练过程中平衡教师强制和非教师强制的比例。教师强制有助于模型更快地学习,因为它总是提供正确的下一个输入;然而,非教师强制有助于模型学习在测试时如何自己生成序列。
  • 模型的输出outputs是一个三维张量,其中包含了每个时间步每个样本在每个词汇上的预测概率。

五、主函数

# 新增术语词典加载部分
def load_terminology_dictionary(dict_file):terminology = {}with open(dict_file, 'r', encoding='utf-8') as f:for line in f:en_term, ch_term = line.strip().split('\t')terminology[en_term] = ch_termreturn terminologydef train(model, iterator, optimizer, criterion, clip):model.train()epoch_loss = 0for i, (src, trg) in enumerate(iterator):src, trg = src.to(device), trg.to(device)optimizer.zero_grad()output = model(src, trg)output_dim = output.shape[-1]output = output[:, 1:].contiguous().view(-1, output_dim)trg = trg[:, 1:].contiguous().view(-1)loss = criterion(output, trg)loss.backward()torch.nn.utils.clip_grad_norm_(model.parameters(), clip)optimizer.step()epoch_loss += loss.item()return epoch_loss / len(iterator)

这段代码包含两个主要的函数,用于处理术语词典的加载和模型训练的流程。下面是对这两个函数的详细解释:

1. load_terminology_dictionary(dict_file)

这个函数用于加载一个术语词典文件,并将文件中的内容转换为一个Python字典。这个字典的键(key)是英文术语,值(value)是对应的中文术语。

  • 参数:

    • dict_file: 术语词典文件的路径,该文件每行包含一个英文术语和一个中文术语,两者之间用制表符(\t)分隔。
  • 过程:

    1. 初始化一个空字典terminology来存储术语对。
    2. 使用with open(...)语句以只读模式('r')和UTF-8编码打开术语词典文件。这样做可以确保文件正确关闭,即使在读取文件时发生异常也是如此。
    3. 遍历文件的每一行,使用strip()方法去除每行末尾的换行符等空白字符,然后使用split('\t')方法将每行按制表符分割成英文术语和中文术语。
    4. 将英文术语作为键,中文术语作为值,存入terminology字典中。
    5. 遍历完成后,返回terminology字典。
2. train(model, iterator, optimizer, criterion, clip)

这个函数定义了模型训练的一个完整周期(epoch)的流程。它接收一个模型、一个数据迭代器、一个优化器、一个损失函数和一个梯度裁剪值作为参数。

  • 参数:

    • model: 待训练的模型。
    • iterator: 数据迭代器,用于遍历训练数据。
    • optimizer: 优化器,用于更新模型的参数以最小化损失函数。
    • criterion: 损失函数,用于评估模型预测和真实标签之间的差异。
    • clip: 梯度裁剪的阈值,用于防止梯度爆炸。
  • 过程:

    1. 将模型设置为训练模式(model.train())。
    2. 初始化epoch_loss为0,用于记录整个训练周期的总损失。
    3. 遍历迭代器中的每一批数据(src, trg),其中src是源语言数据,trg是目标语言数据。
    4. 将源数据和目标数据移动到指定的设备(如GPU)上。
    5. 清零优化器的梯度。
    6. 通过模型进行前向传播,得到预测结果output
    7. 由于模型通常输出的是整个序列的预测(包括起始标记),而损失计算通常不包括起始标记,因此需要调整outputtrg的形状,以排除起始标记。
    8. 计算损失值loss
    9. 通过反向传播计算梯度。
    10. 使用梯度裁剪来防止梯度爆炸。
    11. 更新模型的参数。
    12. 累加当前批次的损失值到epoch_loss
    13. 遍历完成后,计算并返回整个训练周期的平均损失值。
# 主函数
if __name__ == '__main__':start_time = time.time()  # 开始计时device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')#terminology = load_terminology_dictionary('../dataset/en-zh.dic')terminology = load_terminology_dictionary('../dataset/en-zh.dic')# 加载数据dataset = TranslationDataset('../dataset/train.txt',terminology = terminology)# 选择数据集的前N个样本进行训练N = 1000  #int(len(dataset) * 1)  # 或者你可以设置为数据集大小的一定比例,如 int(len(dataset) * 0.1)subset_indices = list(range(N))subset_dataset = Subset(dataset, subset_indices)train_loader = DataLoader(subset_dataset, batch_size=32, shuffle=True, collate_fn=collate_fn)# 定义模型参数INPUT_DIM = len(dataset.en_vocab)OUTPUT_DIM = len(dataset.zh_vocab)ENC_EMB_DIM = 256DEC_EMB_DIM = 256HID_DIM = 512N_LAYERS = 2ENC_DROPOUT = 0.5DEC_DROPOUT = 0.5# 初始化模型enc = Encoder(INPUT_DIM, ENC_EMB_DIM, HID_DIM, N_LAYERS, ENC_DROPOUT)dec = Decoder(OUTPUT_DIM, DEC_EMB_DIM, HID_DIM, N_LAYERS, DEC_DROPOUT)model = Seq2Seq(enc, dec, device).to(device)# 定义优化器和损失函数optimizer = optim.Adam(model.parameters())criterion = nn.CrossEntropyLoss(ignore_index=dataset.zh_word2idx['<pad>'])# 训练模型N_EPOCHS = 10CLIP = 1for epoch in range(N_EPOCHS):train_loss = train(model, train_loader, optimizer, criterion, CLIP)print(f'Epoch: {epoch+1:02} | Train Loss: {train_loss:.3f}')# 在训练循环结束后保存模型torch.save(model.state_dict(), './translation_model_GRU.pth')end_time = time.time()  # 结束计时# 计算并打印运行时间elapsed_time_minute = (end_time - start_time)/60print(f"Total running time: {elapsed_time_minute:.2f} minutes")

在这里插入图片描述
下面是对代码主要部分的详细解释:

  1. 环境设置与设备选择

    • 使用torch.device来检查CUDA是否可用,并据此选择使用GPU还是CPU进行模型训练。
  2. 术语词典加载

    • 调用load_terminology_dictionary函数加载一个术语词典文件(如en-zh.dic),该文件包含英文术语及其对应的中文翻译。加载了术语词典到terminology变量中。
  3. 数据加载与预处理

    • 使用TranslationDataset类(加载训练数据集(如train.txt),并传入术语词典。
    • 从数据集中选择前N个样本(这里是1000个)进行训练,通过SubsetDataLoader进行批量处理和打乱数据。
  4. 模型参数定义

    • 根据数据集的词汇表大小等设置模型的输入维度、输出维度、嵌入维度、隐藏层维度、层数及dropout率等参数。
  5. 模型初始化

    • 分别初始化编码器(Encoder)和解码器(Decoder),然后将它们组合成Seq2Seq模型,并将模型移至选定的设备上(GPU或CPU)。
  6. 优化器和损失函数

    • 使用Adam优化器来优化模型参数。
    • 使用交叉熵损失函数(忽略填充索引)来计算预测和真实标签之间的差异。
  7. 模型训练

    • 通过一个训练循环,进行多个epoch的训练。在每个epoch中,调用train函数来训练模型。
    • 使用梯度裁剪(CLIP)来防止梯度爆炸。
    • 打印每个epoch的训练损失。
  8. 模型保存

    • 在所有epoch完成后,保存模型的参数到文件中(如translation_model_GRU.pth)。
  9. 运行时间计算

    • 计算并打印从程序开始到结束的总运行时间(以分钟为单位)。

六、验证集的模型评价和测试集的模型推理

见教程
https://datawhaler.feishu.cn/wiki/FVs2wAVN5iqHMqk5lW2ckfhAncb


http://www.ppmy.cn/news/1475684.html

相关文章

音频筑基:入门50问

音频筑基&#xff1a;入门50问 通用类编解码类 只问不答&#xff0c;意在启发。 通用类 为什么音频信号分析要从时域到频域&#xff1f;频域变换中&#xff0c;为啥要做TDAC时域混叠消除&#xff1f;人耳听觉频域敏感区是哪部分&#xff0c;为什么&#xff1f;人声发声频域重要…

Python酷库之旅-第三方库Pandas(023)

目录 一、用法精讲 58、pandas.isnull函数 58-1、语法 58-2、参数 58-3、功能 58-4、返回值 58-5、说明 58-6、用法 58-6-1、数据准备 58-6-2、代码示例 58-6-3、结果输出 59、pandas.notna函数 59-1、语法 59-2、参数 59-3、功能 59-4、返回值 59-5、说明 5…

Xcode依赖管理大师:精通项目依赖的艺术与实践

Xcode依赖管理大师&#xff1a;精通项目依赖的艺术与实践 在现代软件开发中&#xff0c;项目依赖管理是确保项目顺利进行的关键环节。Xcode&#xff0c;作为苹果官方的集成开发环境&#xff08;IDE&#xff09;&#xff0c;提供了一套强大的工具来管理项目依赖。本文将深入探讨…

WordPress:无法创建新文章?创建新帖子时候页面空白

wordPress中我们新建文章的时候&#xff0c;会遇到页面空白&#xff0c;这个问题是怎么导致呢&#xff1f;我们可以打开F12开发者模式看下报错信息&#xff0c;这是一个警告信息 Warning: Creating default object from empty value in /pub 到数据库 wp_posts中查看生成了很…

XML Schema 指示器

XML Schema 指示器 1. 引言 XML Schema 是一种用于定义 XML 文档结构和内容的语言。它提供了一种强大的方式来描述 XML 文档中允许的元素、属性和数据类型。XML Schema 指示器是在 XML Schema 定义中使用的一些特殊元素和属性,它们用于指示 XML 处理器如何解析和验证 XML 文…

OpenCV中使用Canny算法在图像中查找边缘

操作系统&#xff1a;ubuntu22.04OpenCV版本&#xff1a;OpenCV4.9IDE:Visual Studio Code编程语言&#xff1a;C11 算法描述 Canny算法是一种广泛应用于计算机视觉和图像处理领域中的边缘检测算法。它由John F. Canny在1986年提出&#xff0c;旨在寻找给定噪声条件下的最佳边…

Python使用策略模式和openpyxl库创建Excel文件并追加内容

from openpyxl import load_workbook# 数据数组 data [[1, 2, 3],[4, 5, 6],[7, 8, 9] ]# 打开现有的 Excel 文件 excel_file sheetApend_example.xlsx wb load_workbook(excel_file)# 选择要追加数据的工作表 sheet_name test_Sheet2 # 指定要追加数据的工作表名称 sheet…

Facebook的AI革命:人工智能如何改变社交体验

随着科技的不断进步&#xff0c;人工智能&#xff08;AI&#xff09;作为一项革命性的技术&#xff0c;正在深刻影响着社交媒体的发展和用户体验。作为全球最大的社交平台之一&#xff0c;Facebook积极探索并应用AI技术&#xff0c;以提升用户的社交互动、内容分享和个性化体验…

Ubuntu系统安装mysql之后进行远程连接

1.首先要配置数据库允许进行远程连接 1.1 打开MySQL配置文件 /etc/mysql/mysql.conf.d/mysqld.cnf sudo vim /etc/mysql/mysql.conf.d/mysqld.cnf1.2 修改 bind-address 行 #按i进入插入模式 bind-address 0.0.0.0 #按 Esc 键退出插入模式。 #输入:wq 然后按 Enter 保存并退…

C# SqlSugar 如何使用Sql语句进行查询,并带参数进行查询,防注入

一般ORM查询单表数据已经是很简单的一种方式了 详情可以看我的另一篇文章&#xff1a;ORM C# 封装SqlSugar 操作数据库_sqlsugar 基类封装-CSDN博客 下面是介绍有些数据是需要比较复杂的SQL语句来进行查询的时候&#xff0c;则需要自行组装SQL语句来进行查询&#xff0c;下面…

Mybatis-plus3.4.3下使用lambdaQuery报错

在 MyBatis-Plus 中&#xff0c;当使用 lambdaQuery().eq(CommonUser::getOpenId, openId).one() 进行查询时&#xff0c;如果未找到匹配的记录&#xff0c;不会抛出异常&#xff0c;而是会返回 null。 具体来说&#xff1a; 如果查询条件匹配到了数据库中的一条记录&#xf…

java 在pdf中根据关键字位置插入图片(公章、签名等)

java 在pdf中根据关键字位置插入图片&#xff08;公章、签名等&#xff09; 1.使用依赖 <dependency><groupId>com.itextpdf</groupId><artifactId>itext7-core</artifactId><version>7.1.12</version><type>pom</type>…

db期末复习自用[应试向 附习题]

第一章 数据库系统实现整体数据的结构化&#xff0c;主要特征之一&#xff0c;是db区别于文件系统的本质区别。 数据库系统三个阶段&#xff1a;人工、文件、数据库系统。 数据库管理系统的功能&#xff1a;数据库定义、操纵 、&#xff08;保护、存储、维护&#xff09;、数…

web安全及内网安全知识

本文来源无问社区&#xff08;wwlib.cn&#xff09;更多详细内容可前往观看http://www.wwlib.cn/index.php/artread/artid/7506.html Web安全 1、sql注入 Web程序中对于用户提交的参数未做过滤直接拼接到SQL语句中执行&#xff0c;导致参数中的特殊字符破坏了SQL语句原有逻…

【算法】二叉树-迭代法实现前后中序遍历

递归的实现就是:每一次递归调用都会把函数的局部变量&#xff0c;参数值和返回地址等压入调用栈中&#xff0c;然后递归返回的时候&#xff0c;从栈顶弹出上一次递归的各项参数&#xff0c;这就是递归为什么可以返回上一层位置的原因 可以用栈实现二叉树的前中后序遍历 1. 前序…

WSGI 服务器教程:`write` 方法解析

Python WSGI 服务器教程&#xff1a;write 方法解析 在本文中&#xff0c;我们将详细解析一个用于 WSGI 服务器的 write 方法。这个方法负责处理 HTTP 响应&#xff0c;包括设置响应头和发送响应数据。我们将逐行解释该方法的工作原理&#xff0c;并提供一些背景知识&#xff…

Python环境配置PyCharm

PyCharm Community设置: A 网络连接 File-Settings-Tools-Web Browsers and Preview-看情况吧[全部删除&#xff0c;换成本地浏览器即可] B Interpreter File-Settings-Project-Python Interpreter-Add Interpreter-System Interpreter-选择 C 系统变量 把B中下载的Pytho…

如何做好漏洞扫描工作提高网络安全

在数字化浪潮席卷全球的今天&#xff0c;企业数字化转型已成为提升竞争力、实现可持续发展的关键路径。然而&#xff0c;这一转型过程并非坦途&#xff0c;其中网络安全问题如同暗礁般潜伏&#xff0c;稍有不慎便可能引发数据泄露、服务中断乃至品牌信誉受损等严重后果。因此&a…

arm 版的 deb、rpm、AppImage 都有什么区别

qq arm 版的 deb、rpm 和 AppImage 格式之间存在几个关键区别。以下是对这些区别的详细解释&#xff1a; 包管理系统与兼容性&#xff1a; deb&#xff1a;是Debian及其衍生发行版&#xff08;如Ubuntu&#xff09;中使用的软件包格式。这些系统使用dpkg命令来管理deb包&#…

顶顶通呼叫中心中间件实现随时启动和停止质检(mod_cti基于FreeSWITCH)

文章目录 前言联系我们拨号方案启动停止ASR执行FreeSWITCH 命令接口启动ASR接口停止ASR接口 通知配置cti.json配置质检结果写入数据库 前言 顶顶通呼叫中心中间件的实时质检功能是由两个模块组成&#xff1a;mod_asr 和 mod_qc。 mod_asr&#xff1a;负责调用ASR将用户们在通…