6、Redis系统-数据结构-05-整数

news/2024/12/22 20:24:27/

五、整数集合(Intset)

整数集合是 Redis 中 Set 对象的底层实现之一。当一个 Set 对象只包含整数值元素,并且元素数量不大时,就会使用整数集合这个数据结构作为底层实现。整数集合通过紧凑的内存布局和升级机制,实现了高效的整数存储和操作。

1. 结构设计

整数集合本质上是一块连续的内存空间,其结构定义如下:

typedef struct intset {// 编码方式uint32_t encoding;// 集合包含的元素数量uint32_t length;// 保存元素的数组int8_t contents[];
} intset;

可以看到,保存元素的容器是一个 contents 数组,虽然 contents 被声明为 int8_t 类型的数组,但是实际上 contents 数组并不保存任何 int8_t 类型的元素,contents 数组的真正类型取决于 intset 结构体里的 encoding 属性的值。比如:

  • 如果 encoding 属性值为 INTSET_ENC_INT16,那么 contents 就是一个 int16_t 类型的数组,数组中每一个元素的类型都是 int16_t
  • 如果 encoding 属性值为 INTSET_ENC_INT32,那么 contents 就是一个 int32_t 类型的数组,数组中每一个元素的类型都是 int32_t
  • 如果 encoding 属性值为 INTSET_ENC_INT64,那么 contents 就是一个 int64_t 类型的数组,数组中每一个元素的类型都是 int64_t
2. 升级操作

整数集合的一个重要特性是支持升级操作。当将一个新元素加入到整数集合中,如果新元素的类型(例如 int32_t)比集合中现有所有元素的类型(例如 int16_t)都要长时,整数集合需要先进行升级操作。升级操作包括扩展 contents 数组的空间大小和维持集合的有序性。

升级示例

假设一个整数集合包含三个 int16_t 类型的元素:

contents: [1, 2, 3]  // 类型:int16_t

现在,我们将一个新元素 65535 加入到集合中,由于这个新元素需要用 int32_t 类型来保存,因此需要进行升级操作:

  1. 扩展空间:首先需要为 contents 数组扩容,在原本空间的大小之上再扩容多 80 位(4x32 - 3x16 = 80),这样就能保存下 4 个 int32_t 类型的元素。

  2. 转换类型:扩容完 contents 数组空间大小后,需要将之前的三个 int16_t 类型的元素转换为 int32_t 类型,并将转换后的元素放置到正确的位置上,并且需要维持底层数组的有序性不变。

升级后的 contents 数组如下:

contents: [1, 2, 3, 65535]  // 类型:int32_t
升级的好处
  1. 节省内存:如果直接使用 int64_t 类型的数组来保存所有元素,虽然可以保存不同类型的整数,但会造成内存浪费。例如,当元素都是 int16_t 类型时,使用 int64_t 类型数组会浪费大量内存。
  2. 灵活性:通过升级机制,整数集合可以根据需要动态调整数组类型,既能节省内存,又能支持更大范围的整数。
不支持降级

值得注意的是,整数集合不支持降级操作。一旦数组类型升级到更大的整数类型,就不会再降级回较小的类型。这是为了简化实现和避免降级过程中可能产生的复杂性。

3. 操作实现

整数集合支持多种操作,包括插入、删除、查找等。以下是一些常见操作的实现示例:

插入操作

插入新元素时,首先检查新元素的类型是否需要升级。如果需要升级,先进行升级操作,然后将新元素插入到正确的位置,维持数组的有序性。

intset *intsetAdd(intset *is, int64_t value, uint8_t *success) {uint8_t valenc = _intsetValueEncoding(value);uint32_t pos;if (success) *success = 1;if (valenc > intrev32ifbe(is->encoding)) {// 升级操作return intsetUpgradeAndAdd(is, value);} else {if (intsetSearch(is, value, &pos)) {if (success) *success = 0;return is;}// 插入操作is = intsetResize(is, intrev32ifbe(is->length) + 1);if (pos < intrev32ifbe(is->length)) {memmove(intsetGet(is, pos + 1), intsetGet(is, pos),(intrev32ifbe(is->length) - pos) * intrev32ifbe(is->encoding));}intsetSet(is, pos, value);is->length = intrev32ifbe(intrev32ifbe(is->length) + 1);}return is;
}
查找操作

查找元素时,通过二分查找算法在有序数组中高效地查找目标元素的位置。

uint8_t intsetSearch(const intset *is, int64_t value, uint32_t *pos) {int64_t cur;int min = 0, max = intrev32ifbe(is->length) - 1, mid = -1;if (intrev32ifbe(is->length) == 0) {if (pos) *pos = 0;return 0;} else {while (max >= min) {mid = (min + max) >> 1;cur = intsetGet(is, mid);if (value > cur) {min = mid + 1;} else if (value < cur) {max = mid - 1;} else {break;}}if (value == cur) {if (pos) *pos = mid;return 1;} else {if (pos) *pos = min;return 0;}}
}
删除操作

删除元素时,首先查找到目标元素的位置,然后移除该元素并调整数组大小。

intset *intsetRemove(intset *is, int64_t value, int *success) {uint8_t valenc = _intsetValueEncoding(value);uint32_t pos;if (success) *success = 0;if (valenc <= intrev32ifbe(is->encoding) && intsetSearch(is, value, &pos)) {uint32_t len = intrev32ifbe(is->length);// 移除操作if (pos < (len - 1)) {memmove(intsetGet(is, pos), intsetGet(is, pos + 1),(len - pos - 1) * intrev32ifbe(is->encoding));}is = intsetResize(is, len - 1);is->length = intrev32ifbe(len - 1);if (success) *success = 1;}return is;
}
4. 使用示例

以下是一些使用 Redis 整数集合的示例,展示了如何利用整数集合进行数据的存储和操作。

插入数据

SADD myset 1
SADD myset 2
SADD myset 3

获取数据

SMEMBERS myset
# 1) "1"
# 2) "2"
# 3) "3"

删除数据

SREM myset 2
SMEMBERS myset
# 1) "1"
# 2) "3"
结论

通过上述解析,我们可以更好地理解整数集合的设计思想和实现原理,从而在实际开发中更好地利用整数集合提供的优势。在 Redis 中,整数集合通过紧凑的内存布局和动态升级机制,实现了高效的整数存储和操作。了解这些优化策略,可以帮助我们在实际应用中更好地利用 Redis 的性能和功能。


http://www.ppmy.cn/news/1474091.html

相关文章

Linux Vim基础教程

Linux Vim 简单教程&#xff1a; 一、安装与启动 Vim 首先&#xff0c;确保你的 Linux 系统已经安装了 Vim。在大多数 Linux 发行版中&#xff0c;你可以通过包管理器来安装 Vim。以下是在不同发行版中安装 Vim 的命令&#xff1a; Ubuntu/Debian: sudo apt-get install vimF…

C# Winform PropertyGrid显示中文

主要原理是在枚举上添加DescriptionAttribute属性&#xff0c;然后通过反射将其显示出来 方法1&#xff1a;继承StringConverter类 public class EnumConvertor : StringConverter {public override bool GetStandardValuesSupported(ITypeDescriptorContext context){return…

Android SurfaceFlinger——创建EGLSurface(二十三)

我们知道 EGL 就是适配 Android 本地窗口系统和 OpenGL ES 的桥接层,OpenGL ES 定义了平台无关的 GL 绘图指令,EGL 则定义了控制 Displays、Contexts 以及 Surfaces 的统一的平台接口。前面我们已经介绍了 Surface 的相关内容,而对于 EGL 来说同样存在一个与之对应的 Surfac…

2005-2023年各省居民人均消费支出、城镇居民人均消费支出、农村居民人均消费支出数据(无缺失)

2005-2023年各省居民人均消费支出、城镇居民人均消费支出、农村居民人均消费支出数据&#xff08;无缺失&#xff09; 1、时间&#xff1a;2005-2023年 2、来源&#xff1a;国家统计局、统计年鉴 3、范围&#xff1a;31省 4、指标&#xff1a;全体居民人均消费支出、城镇居…

【深度学习练习】心脏病预测

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 一、什么是RNN RNN与传统神经网络最大的区别在于&#xff0c;每次都会将前一次的输出结果&#xff0c;带到下一隐藏层中一起训练。如下图所示&#xff1a; …

嵌入式C语言面试相关知识——编译过程

嵌入式C语言面试相关知识——编译过程 一、博客声明二、自问题目1、C语言的编译过程是什么&#xff1f;2、编译过程中参与的工具有哪些&#xff1f;3、什么是条件编译&#xff0c;作用是什么&#xff1f;4、链接环节中的静态链接和动态链接是什么&#xff0c;有何区别&#xff…

Cortex-A510——内核及汇编

Cortex-A510——内核及汇编 小狼http://blog.csdn.net/xiaolangyangyang 1、异常等级 2、异常等级切换 同步异常&#xff1a; 1、SVC/HVC/SMC&#xff1b; 2、MMU引发的异常&#xff08;内核态EL1发生&#xff0c;发生后不会进行异常等级切换…

智能井盖采集装置 开启井下安全新篇章

在现代城市的脉络之下&#xff0c;错综复杂的管网系统如同城市的血管&#xff0c;默默支撑着日常生活的有序进行。而管网的监测设备大多都安装在井下&#xff0c;如何给设备供电一直是一个难题&#xff0c;选用市电供电需经过多方审批&#xff0c;选用电池供电需要更换电池包&a…