cs224n作业4

news/2024/12/22 17:36:09/

NMT结构图:(具体结构图)
在这里插入图片描述
LSTM基础知识
nmt_model.py:
参考文章:LSTM输出结构描述

#!/usr/bin/env python3
# -*- coding: utf-8 -*-"""
CS224N 2020-21: Homework 4
nmt_model.py: NMT Model
Pencheng Yin <pcyin@cs.cmu.edu>
Sahil Chopra <schopra8@stanford.edu>
Vera Lin <veralin@stanford.edu>
"""
from collections import namedtuple
import sys
from typing import List, Tuple, Dict, Set, Union
import torch
import torch.nn as nn
import torch.nn.utils
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequencefrom model_embeddings import ModelEmbeddings
Hypothesis = namedtuple('Hypothesis', ['value', 'score'])class NMT(nn.Module):""" Simple Neural Machine Translation Model:- Bidrectional LSTM Encoder- Unidirection LSTM Decoder- Global Attention Model (Luong, et al. 2015)"""def __init__(self, embed_size, hidden_size, vocab, dropout_rate=0.2):""" Init NMT Model.@param embed_size (int): Embedding size (dimensionality)@param hidden_size (int): Hidden Size, the size of hidden states (dimensionality)@param vocab (Vocab): Vocabulary object containing src and tgt languagesSee vocab.py for documentation.@param dropout_rate (float): Dropout probability, for attention"""super(NMT, self).__init__()self.model_embeddings = ModelEmbeddings(embed_size, vocab)self.hidden_size = hidden_sizeself.dropout_rate = dropout_rateself.vocab = vocab# default valuesself.encoder = None self.decoder = Noneself.h_projection = Noneself.c_projection = Noneself.att_projection = Noneself.combined_output_projection = Noneself.target_vocab_projection = Noneself.dropout = None# For sanity check only, not relevant to implementationself.gen_sanity_check = Falseself.counter = 0### YOUR CODE HERE (~8 Lines)### TODO - Initialize the following variables:###     self.encoder (Bidirectional LSTM with bias)###     self.decoder (LSTM Cell with bias)###     self.h_projection (Linear Layer with no bias), called W_{h} in the PDF.###     self.c_projection (Linear Layer with no bias), called W_{c} in the PDF.###     self.att_projection (Linear Layer with no bias), called W_{attProj} in the PDF.###     self.combined_output_projection (Linear Layer with no bias), called W_{u} in the PDF.###     self.target_vocab_projection (Linear Layer with no bias), called W_{vocab} in the PDF.###     self.dropout (Dropout Layer)###### Use the following docs to properly initialize these variables:###     LSTM:###         https://pytorch.org/docs/stable/nn.html#torch.nn.LSTM###     LSTM Cell:###         https://pytorch.org/docs/stable/nn.html#torch.nn.LSTMCell###     Linear Layer:###         https://pytorch.org/docs/stable/nn.html#torch.nn.Linear###     Dropout Layer:###         https://pytorch.org/docs/stable/nn.html#torch.nn.Dropoutself.encoder = nn.LSTM(input_size=embed_size, hidden_size=hidden_size, bias=True, bidirectional=True)self.decoder = nn.LSTMCell(input_size=embed_size + hidden_size, hidden_size=hidden_size, bias=True)self.h_projection = nn.Linear(in_features=2 * hidden_size, out_features=hidden_size, bias=False)self.c_projection = nn.Linear(in_features=2 * hidden_size, out_features=hidden_size, bias=False)self.att_projection = nn.Linear(in_features=2 * hidden_size, out_features=hidden_size, bias=False)self.combined_output_projection = nn.Linear(in_features=3 * hidden_size, out_features=hidden_size, bias=False)self.target_vocab_projection = nn.Linear(in_features=hidden_size, out_features=len(self.vocab.tgt), bias=False)self.dropout = nn.Dropout(p=dropout_rate)### END YOUR CODEdef forward(self, source: List[List[str]], target: List[List[str]]) -> torch.Tensor:""" Take a mini-batch of source and target sentences, compute the log-likelihood oftarget sentences under the language models learned by the NMT system.@param source (List[List[str]]): list of source sentence tokens@param target (List[List[str]]): list of target sentence tokens, wrapped by `<s>` and `</s>`@returns scores (Tensor): a variable/tensor of shape (b, ) representing thelog-likelihood of generating the gold-standard target sentence foreach example in the input batch. Here b = batch size."""# Compute sentence lengthssource_lengths = [len(s) for s in source]# Convert list of lists into tensorssource_padded = self.vocab.src.to_input_tensor(source, device=self.device)   # Tensor: (src_len, b)target_padded = self.vocab.tgt.to_input_tensor(target, device=self.device)   # Tensor: (tgt_len, b)###     Run the network forward:###     1. Apply the encoder to `source_padded` by calling `self.encode()`###     2. Generate sentence masks for `source_padded` by calling `self.generate_sent_masks()`###     3. Apply the decoder to compute combined-output by calling `self.decode()`###     4. Compute log probability distribution over the target vocabulary using the###        combined_outputs returned by the `self.decode()` function.enc_hiddens, dec_init_state = self.encode(source_padded, source_lengths)enc_masks = self.generate_sent_masks(enc_hiddens, source_lengths)combined_outputs = self.decode(enc_hiddens, enc_masks, dec_init_state, target_padded)P = F.log_softmax(self.target_vocab_projection(combined_outputs), dim=-1)# Zero out, probabilities for which we have nothing in the target texttarget_masks = (target_padded != self.vocab.tgt['<pad>']).float()# Compute log probability of generating true target wordstarget_gold_words_log_prob = torch.gather(P, index=target_padded[1:].unsqueeze(-1), dim=-1).squeeze(-1) * target_masks[1:]scores = target_gold_words_log_prob.sum(dim=0)return scoresdef encode(self, source_padded: torch.Tensor, source_lengths: List[int]) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:""" Apply the encoder to source sentences to obtain encoder hidden states.Additionally, take the final states of the encoder and project them to obtain initial states for decoder.@param source_padded (Tensor): Tensor of padded source sentences with shape (src_len, b), whereb = batch_size, src_len = maximum source sentence length. Note that these have already been sorted in order of longest to shortest sentence.@param source_lengths (List[int]): List of actual lengths for each of the source sentences in the batch@returns enc_hiddens (Tensor): Tensor of hidden units with shape (b, src_len, h*2), whereb = batch size, src_len = maximum source sentence length, h = hidden size.@returns dec_init_state (tuple(Tensor, Tensor)): Tuple of tensors representing the decoder's initialhidden state and cell."""enc_hiddens, dec_init_state = None, None### YOUR CODE HERE (~ 8 Lines)### TODO:###     1. Construct Tensor `X` of source sentences with shape (src_len, b, e) using the source model embeddings.###         src_len = maximum source sentence length, b = batch size, e = embedding size. Note###         that there is no initial hidden state or cell for the decoder.###     2. Compute `enc_hiddens`, `last_hidden`, `last_cell` by applying the encoder to `X`.###         - Before you can apply the encoder, you need to apply the `pack_padded_sequence` function to X.###         - After you apply the encoder, you need to apply the `pad_packed_sequence` function to enc_hiddens.###         - Note that the shape of the tensor returned by the encoder is (src_len, b, h*2) and we want to###           return a tensor of shape (b, src_len, h*2) as `enc_hiddens`.###     3. Compute `dec_init_state` = (init_decoder_hidden, init_decoder_cell):###         - `init_decoder_hidden`:###             `last_hidden` is a tensor shape (2, b, h). The first dimension corresponds to forwards and backwards.###             Concatenate the forwards and backwards tensors to obtain a tensor shape (b, 2*h).###             Apply the h_projection layer to this in order to compute init_decoder_hidden.###             This is h_0^{dec} in the PDF. Here b = batch size, h = hidden size###         - `init_decoder_cell`:###             `last_cell` is a tensor shape (2, b, h). The first dimension corresponds to forwards and backwards.###             Concatenate the forwards and backwards tensors to obtain a tensor shape (b, 2*h).###             Apply the c_projection layer to this in order to compute init_decoder_cell.###             This is c_0^{dec} in the PDF. Here b = batch size, h = hidden size###### See the following docs, as you may need to use some of the following functions in your implementation:###     Pack the padded sequence X before passing to the encoder:###         https://pytorch.org/docs/stable/nn.html#torch.nn.utils.rnn.pack_padded_sequence###     Pad the packed sequence, enc_hiddens, returned by the encoder:###         https://pytorch.org/docs/stable/nn.html#torch.nn.utils.rnn.pad_packed_sequence###     Tensor Concatenation:###         https://pytorch.org/docs/stable/torch.html#torch.cat###     Tensor Permute:###         https://pytorch.org/docs/stable/tensors.html#torch.Tensor.permuteX = self.model_embeddings.source(source_padded)X = pack_padded_sequence(X, lengths=torch.tensor(source_lengths))enc_hiddens, (last_hidden, last_cell) = self.encoder(X)enc_hiddens = pad_packed_sequence(enc_hiddens, batch_first=True)[0]last_hidden = torch.cat((last_hidden[0], last_hidden[1]), dim=1)init_decoder_hidden = self.h_projection(last_hidden)last_cell = torch.cat((last_cell[0], last_cell[1]), dim=1)init_decoder_cell = self.c_projection(last_cell)dec_init_state = (init_decoder_hidden, init_decoder_cell)### END YOUR CODEreturn enc_hiddens, dec_init_statedef decode(self, enc_hiddens: torch.Tensor, enc_masks: torch.Tensor,  dec_init_state: Tuple[torch.Tensor, torch.Tensor], target_padded: torch.Tensor) -> torch.Tensor:  # Chop off the <END> token for max length sentences.  target_padded = target_padded[:-1]  # Initialize the decoder state (hidden and cell)  dec_state = dec_init_state  # Initialize previous combined output vector o_{t-1} as zero  batch_size = enc_hiddens.size(0)  o_prev = torch.zeros(batch_size, self.hidden_size, device=self.device)  # Initialize a list we will use to collect the combined output o_t on each step  combined_outputs = []  enc_hiddens_proj = self.att_projection(enc_hiddens)  Y = self.model_embeddings.target(target_padded)  for Y_t in torch.split(Y, split_size_or_sections=1, dim=0):  Y_t = torch.squeeze(Y_t, dim=0)  Ybar_t = torch.cat((Y_t, o_prev), dim=1)  next_dec_state, o_t, _ = self.step(Ybar_t, dec_state, enc_hiddens, enc_hiddens_proj, enc_masks)  combined_outputs.append(o_t)  o_prev = o_t  dec_state = next_dec_state  # Notice the corrected indentation here  combined_outputs = torch.stack(combined_outputs, dim=0)  ### END YOUR CODE  return combined_outputsdef step(self, Ybar_t: torch.Tensor,  dec_state: Tuple[torch.Tensor, torch.Tensor],  enc_hiddens: torch.Tensor,  enc_hiddens_proj: torch.Tensor,  enc_masks: torch.Tensor) -> Tuple[Tuple, torch.Tensor, torch.Tensor]:  combined_output = None  # Decode the input based on the decoder's current state  dec_state = self.decoder(Ybar_t, dec_state)  dec_hidden, dec_cell = dec_state  # Compute the attention scores  e_t = torch.bmm(input=torch.unsqueeze(dec_hidden, 1), mat2=enc_hiddens_proj.permute(0, 2, 1))  e_t = torch.squeeze(e_t, dim=1)  # Apply attention mask if necessary  if enc_masks is not None:  e_t.data.masked_fill_(enc_masks.bool(), -float('inf'))  # Compute the attention weights  alpha_t = F.softmax(e_t, dim=1)  alpha_t = torch.unsqueeze(alpha_t, dim=1)  # Compute the context vector  a_t = torch.bmm(input=alpha_t, mat2=enc_hiddens)  a_t = torch.squeeze(a_t, dim=1)  # Combine the context vector and the decoder's hidden state  u_t = torch.cat((a_t, dec_hidden), dim=1)  # Project the combined vector  v_t = self.combined_output_projection(u_t)  # Apply dropout and nonlinearity  O_t = self.dropout(torch.tanh(v_t))  # Assign the combined output  combined_output = O_t  # Return the updated decoder state, the combined output, and the attention scores  return dec_state, combined_output, e_tdef generate_sent_masks(self, enc_hiddens: torch.Tensor, source_lengths: List[int]) -> torch.Tensor:""" Generate sentence masks for encoder hidden states.@param enc_hiddens (Tensor): encodings of shape (b, src_len, 2*h), where b = batch size,src_len = max source length, h = hidden size. @param source_lengths (List[int]): List of actual lengths for each of the sentences in the batch.@returns enc_masks (Tensor): Tensor of sentence masks of shape (b, src_len),where src_len = max source length, h = hidden size."""enc_masks = torch.zeros(enc_hiddens.size(0), enc_hiddens.size(1), dtype=torch.float)for e_id, src_len in enumerate(source_lengths):enc_masks[e_id, src_len:] = 1return enc_masks.to(self.device)def beam_search(self, src_sent: List[str], beam_size: int=5, max_decoding_time_step: int=70) -> List[Hypothesis]:""" Given a single source sentence, perform beam search, yielding translations in the target language.@param src_sent (List[str]): a single source sentence (words)@param beam_size (int): beam size@param max_decoding_time_step (int): maximum number of time steps to unroll the decoding RNN@returns hypotheses (List[Hypothesis]): a list of hypothesis, each hypothesis has two fields:value: List[str]: the decoded target sentence, represented as a list of wordsscore: float: the log-likelihood of the target sentence"""src_sents_var = self.vocab.src.to_input_tensor([src_sent], self.device)src_encodings, dec_init_vec = self.encode(src_sents_var, [len(src_sent)])src_encodings_att_linear = self.att_projection(src_encodings)h_tm1 = dec_init_vecatt_tm1 = torch.zeros(1, self.hidden_size, device=self.device)eos_id = self.vocab.tgt['</s>']hypotheses = [['<s>']]hyp_scores = torch.zeros(len(hypotheses), dtype=torch.float, device=self.device)completed_hypotheses = []t = 0while len(completed_hypotheses) < beam_size and t < max_decoding_time_step:t += 1hyp_num = len(hypotheses)exp_src_encodings = src_encodings.expand(hyp_num,src_encodings.size(1),src_encodings.size(2))exp_src_encodings_att_linear = src_encodings_att_linear.expand(hyp_num,src_encodings_att_linear.size(1),src_encodings_att_linear.size(2))y_tm1 = torch.tensor([self.vocab.tgt[hyp[-1]] for hyp in hypotheses], dtype=torch.long, device=self.device)y_t_embed = self.model_embeddings.target(y_tm1)x = torch.cat([y_t_embed, att_tm1], dim=-1)(h_t, cell_t), att_t, _  = self.step(x, h_tm1,exp_src_encodings, exp_src_encodings_att_linear, enc_masks=None)# log probabilities over target wordslog_p_t = F.log_softmax(self.target_vocab_projection(att_t), dim=-1)live_hyp_num = beam_size - len(completed_hypotheses)contiuating_hyp_scores = (hyp_scores.unsqueeze(1).expand_as(log_p_t) + log_p_t).view(-1)top_cand_hyp_scores, top_cand_hyp_pos = torch.topk(contiuating_hyp_scores, k=live_hyp_num)prev_hyp_ids = top_cand_hyp_pos // len(self.vocab.tgt)hyp_word_ids = top_cand_hyp_pos % len(self.vocab.tgt)new_hypotheses = []live_hyp_ids = []new_hyp_scores = []for prev_hyp_id, hyp_word_id, cand_new_hyp_score in zip(prev_hyp_ids, hyp_word_ids, top_cand_hyp_scores):prev_hyp_id = prev_hyp_id.item()hyp_word_id = hyp_word_id.item()cand_new_hyp_score = cand_new_hyp_score.item()hyp_word = self.vocab.tgt.id2word[hyp_word_id]new_hyp_sent = hypotheses[prev_hyp_id] + [hyp_word]if hyp_word == '</s>':completed_hypotheses.append(Hypothesis(value=new_hyp_sent[1:-1],score=cand_new_hyp_score))else:new_hypotheses.append(new_hyp_sent)live_hyp_ids.append(prev_hyp_id)new_hyp_scores.append(cand_new_hyp_score)if len(completed_hypotheses) == beam_size:breaklive_hyp_ids = torch.tensor(live_hyp_ids, dtype=torch.long, device=self.device)h_tm1 = (h_t[live_hyp_ids], cell_t[live_hyp_ids])att_tm1 = att_t[live_hyp_ids]hypotheses = new_hypotheseshyp_scores = torch.tensor(new_hyp_scores, dtype=torch.float, device=self.device)if len(completed_hypotheses) == 0:completed_hypotheses.append(Hypothesis(value=hypotheses[0][1:],score=hyp_scores[0].item()))completed_hypotheses.sort(key=lambda hyp: hyp.score, reverse=True)return completed_hypotheses@propertydef device(self) -> torch.device:""" Determine which device to place the Tensors upon, CPU or GPU."""return self.model_embeddings.source.weight.device@staticmethoddef load(model_path: str):""" Load the model from a file.@param model_path (str): path to model"""params = torch.load(model_path, map_location=lambda storage, loc: storage)args = params['args']model = NMT(vocab=params['vocab'], **args)model.load_state_dict(params['state_dict'])return modeldef save(self, path: str):""" Save the odel to a file.@param path (str): path to the model"""print('save model parameters to [%s]' % path, file=sys.stderr)params = {'args': dict(embed_size=self.model_embeddings.embed_size, hidden_size=self.hidden_size, dropout_rate=self.dropout_rate),'vocab': self.vocab,'state_dict': self.state_dict()}torch.save(params, path)

model_embeddings.py:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-import torch.nn as nn  class ModelEmbeddings(nn.Module):  def __init__(self, embed_size, vocab):  super(ModelEmbeddings, self).__init__()  self.embed_size = embed_size  # default values  self.source = None  self.target = None  src_pad_token_idx = vocab.src['<pad>']  tgt_pad_token_idx = vocab.tgt['<pad>']  self.source = nn.Embedding(num_embeddings=len(vocab.src),  embedding_dim=self.embed_size,  padding_idx=src_pad_token_idx)  self.target = nn.Embedding(num_embeddings=len(vocab.tgt),  embedding_dim=self.embed_size,  padding_idx=tgt_pad_token_idx)### END YOUR CODE

http://www.ppmy.cn/news/1473660.html

相关文章

SQL Server时间转换

第一种&#xff1a;format --转化成年月日 select format( GETDATE(),yyyy-MM-dd) --转化年月日&#xff0c;时分秒&#xff0c;这里的HH指24小时的&#xff0c;hh是12小时的 select format( GETDATE(),yyyy-MM-dd HH:mm:ss) --转化成时分秒的&#xff0c;这里就不一样的&…

【Asterinas】Asterinas 内存管理

Asterinas 内存管理 Asterinas 内存管理 研究Asterinas 对内存管理主要从以下几个方面展开&#xff1a; •Asterinas对物理内存的管理方式 •Asterinas对进程虚拟地址空间的管理方式 •Asterinas虚拟地址空间与物理地址空间的映射管理方式 Asterinas对物理内存的管理方式 Aste…

Redis Cluster 模式 的具体实施细节是什么样的?

概述 参考&#xff1a;What are Redis Cluster and How to setup Redis Cluster locally ? | by Rajat Pachauri | Medium Redis Cluster 的工作原理是将数据分布在多个节点上&#xff0c;同时确保高可用性和容错能力。以下是 Redis Cluster 运行方式的简要概述&#xff1a; …

Perl 语言开发(五):循环语句

目录 1. 循环语句概述 2. while 循环 2.1 基本语法 2.2 示例 2.3 无限循环 3. until 循环 3.1 基本语法 3.2 示例 3.3 无限循环 4. for 循环 4.1 基本语法 4.2 示例 4.3 嵌套循环 5. foreach 循环 5.1 基本语法 5.2 示例 5.3 遍历哈希 6. 循环控制语句 6.1 …

动手学深度学习(Pytorch版)代码实践 -计算机视觉-48全连接卷积神经网络(FCN)

48全连接卷积神经网络&#xff08;FCN&#xff09; 1.构造函数 import torch import torchvision from torch import nn from torch.nn import functional as F import matplotlib.pyplot as plt import liliPytorch as lp from d2l import torch as d2l# 构造模型 pretrained…

tsconfig.json的include和exclude作用

tsconfig.json中的include和exclude属性用于指定需要被编译的TypeScript文件和需要被排除的文件。‌ include属性&#xff1a;‌用于指定哪些.ts、‌.tsx或.d.ts文件需要被编译。‌如果不指定include属性&#xff0c;‌则默认当前目录下除了exclude之外的所有.ts、‌.d.ts、‌…

设计模式学习-《策略模式》

策略模式 问题描述&#xff1a; 有各种鸭子(北京鸭、玩具鸭)&#xff0c;鸭子有各种行为(叫、飞)希望能够实现不同的鸭子&#xff0c;显示不同鸭子的信息 传统方法会创建一个抽象类 public abstract class Duck{public Duck(){}public abstract void display();//显示鸭子信…

NSSCTF-Web题目20(文件包含)

目录 [HCTF 2018]Warmup 1、题目 2、知识点 3、思路 [HGAME 2023 week1]Classic Childhood Game 4、题目 5、知识点 6、思路 [HCTF 2018]Warmup 1、题目 2、知识点 文件包含&#xff0c;代码审计 3、思路 打开题目&#xff0c;发现只有一个表情&#xff0c;右键查看源…