【数据结构】链式二叉树(超详细)

news/2024/9/20 1:16:33/ 标签: 数据结构, 算法

文章目录

  • 前言
  • 二叉树的链式结构
  • 二叉树的遍历方式
    • 二叉树的深度优先遍历
      • 前序遍历(先根遍历)
      • 中序遍历(中根遍历)
      • 后序遍历(后根遍历)
    • 二叉树的广度优先遍历
      • 层序遍历
  • 二叉树链式结构接口实现
    • 二叉树结点个数
    • 二叉树叶子结点个数
    • 二叉树的深度(高度)
    • 二叉树第k层结点个数
    • 二叉树查找x值的结点
    • 销毁二叉树
    • 二叉树的创建及遍历
  • 衍生题
    • 判断二叉树是否为完全二叉树
    • 判断二叉树是否为单值二叉树
    • 判断两颗二叉树是否相同
    • 判断二叉树是否为对称二叉树
    • 判断一颗二叉树是否为另一颗二叉树的子树
    • 判断二叉树是否为平衡二叉树
    • 翻转二叉树

前言

二叉树的顺序结构就是用数组来存储,而「数组」一般只适合表示「满二叉树」或「完全二叉树」,因为不是完全二叉树会有「空间的浪费」。
普通二叉树的增删查改没有意义,主要学习它的结构,要加上搜索树的规则,才有价值。

二叉树的链式结构

二叉树链式结构的实现
在学习二叉树的基本操作前,需先要创建一棵二叉树,这里手动快速创建一棵简单的二叉树

#include<stdio.h>  // perror, printf
#include<stdlib.h> // malloctypedef char BTDataType;
// 定义二叉树的结点
typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;// 动态申请一个新结点
BTNode* BuyNode(BTDataType x)
{// BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));if (newnode == NULL){perror("malloc");exit(-1);}newnode->data = x;newnode->left = newnode->right = NULL;return newnode;
}// 二叉树的链式结构
BTNode* CreatBinaryTree()
{// 创建多个结点BTNode* node_A = BuyNode('A');BTNode* node_B = BuyNode('B');BTNode* node_C = BuyNode('C');BTNode* node_D = BuyNode('D');BTNode* node_E = BuyNode('E');BTNode* node_F = BuyNode('F');// 用链来指示结点间的逻辑关系node_A->left = node_B;node_A->right = node_C;node_B->left = node_D;node_C->left = node_E;node_C->right = node_F;return node_A;
}

注意:上述代码并不是创建二叉树的方式
在这里插入图片描述

二叉树的遍历方式

二叉树的深度优先遍历

由于被访问的结点必是「某子树的根」,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

前序遍历(先根遍历)

遍历顺序:根->左子树->右子树

//前序遍历
void BinaryPrevOrder(BTNode* root)
{if (root == NULL){return;}//根->左子树->右子树printf("%c ", root->data);BinaryPrevOrder(root->left);BinaryPrevOrder(root->right);
}

这里的访问路径是:A B D NULL NULL NULL C E NULL NULL F NULL NULL

在这里插入图片描述

接下来的两个遍历可以自己试试画一下递归图。

中序遍历(中根遍历)

遍历顺序:左子树->根->右子树

void BinaryInOrder(BTNode* root)
{if (root == NULL){return;}//左子树->根->右子树BinaryInOrder(root->left);printf("%c ", root->data);BinaryInOrder(root->right);
}

这里的访问路径是:NULL D NULL B NULL A NULL E NULL C NULL F NULL

后序遍历(后根遍历)

遍历顺序:左子树->右子树->根

//后序遍历
void BinaryPostOrder(BTNode* root)
{if (root == NULL){return;}//左子树->右子树->根BinaryPostOrder(root->left);BinaryPostOrder(root->right);printf("%c ", root->data);
}

这里的访问路径是:NULL NULL D NULL B NULL NULL E NULL NULL F C A

二叉树的广度优先遍历

层序遍历

层序遍历,自上而下,从左往右逐层访问树的结点的过程就是层序遍历。
在这里插入图片描述
我们借助队列来实现:
先入根结点,然后出队列,再入他的两个孩子,然后一样的出孩子,再入孩子的孩子,重复即可。(NULL不入)
在这里插入图片描述

//层序遍历
void BinaryLevelOrder(BTNode* root)
{Queue q;QueueInit(&q);//初始化队列if (root != NULL)QueuePush(&q, root);int levelSize = 1;while (!QueueEmpty(&q))//当队列不为空时,循环继续{//一层一层出while (levelSize--){BTNode* front = QueueFront(&q);//读取队头元素QueuePop(&q);//删除队头元素printf("%c ", front->data);//打印出队的元素if (front->left){QueuePush(&q, front->left);//出队元素的左孩子入队列}if (front->right){QueuePush(&q, front->right);//出队元素的右孩子入队列}}printf("\n");levelSize = QueueSize(&q);}printf("\n");QueueDestroy(&q);//销毁队列
}

二叉树链式结构接口实现

二叉树结点个数

子问题拆解:
 1.若为空,则结点个数为0。
 2.若不为空,则结点个数 = 左子树结点个数 + 右子树结点个数 + 1(自己)。

//结点的个数
int BinaryTreeSize(BTNode* root)
{//结点个数 = 左子树的结点个数 + 右子树的结点个数 + 自己return root == NULL ? 0 : BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}

在这里插入图片描述

二叉树叶子结点个数

子问题拆解:
 1.若为空,则叶子结点个数为0。
 2.若结点的左指针和右指针均为空,则叶子结点个数为1。
 3.除上述两种情况外,说明该树存在子树,其叶子结点个数 = 左子树的叶子结点个数 + 右子树的叶子结点个数。

//叶子结点的个数
int BinaryTreeLeafSize(BTNode* root)
{if (root == NULL)//空树无叶子结点return 0;if (root->left == NULL && root->right == NULL)//是叶子结点return 1;//叶子结点的个数 = 左子树的叶子结点个数 + 右子树的叶子结点个数return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

在这里插入图片描述

二叉树的深度(高度)

子问题拆解:

  1. 先判断当前树的根结点是否为空
  2. 当前树的根结点不为空,分别计算其左右子树的深度
  3. 比较当前树左右子树的深度,最大的那个+1 就是当前树的深度
// 二叉树的深度(高度)
int BinaryTreeMaxDepth(BTNode* root)
{// 先判断当前树的根结点是否为空if (root == NULL){return 0;}// 当前树的根结点不为空,分别计算其左右子树的深度int leftDepth = BinaryTreeMaxDepth(root->left);int rightDepth = BinaryTreeMaxDepth(root->right);// 比较当前树左右子树的深度,最大的那个+1 就是当前树的深度return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
}

在这里插入图片描述

二叉树第k层结点个数

//第k层结点的个数O(N)
int BinaryTreeKLevelSize(BTNode* root, int k)
{assert(k > 0);if (root == NULL)return 0;if (k == 1)//第一层结点个数return 1;//相对于父结点的第k层的结点个数 = 相对于两个孩子结点的第k-1层的结点个数之和return BinaryTreeKLevelSize(root->left, k - 1) + BinaryTreeKLevelSize(root->right, k - 1);
}

在这里插入图片描述

二叉树查找x值的结点

//查找值为x的结点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{if (root == NULL)//空树return NULL;if (root->data == x)//先判断根结点return root;BTNode* leftret = BinaryTreeFind(root->left, x);//在左子树中找if (leftret)return leftret;BTNode* rightret = BinaryTreeFind(root->right, x);//在右子树中找if (rightret)return rightret;return NULL;//根结点和左右子树中均没有找到
}

在这里插入图片描述

销毁二叉树

这里要用后序遍历来销毁,左子树->右子树->根

//销毁二叉树
void BinaryTreeDestroy(BTNode* root)
{if (root == NULL)return;BinaryTreeDestroy(root->left);BinaryTreeDestroy(root->right);free(root);//没有用二级指针,这里只是实参的拷贝,需要用完主动置空再函数外置空}

二叉树的创建及遍历

编一个程序,读入用户输入的一串先序遍历字符串,根据此字符串建立一个二叉树(以指针方式存储)。
例如如下的先序遍历字符串: ABC##DE#G##F### 其中“#”表示的是空格,空格字符代表空树。建立起此二叉树以后,再对二叉树进行中序遍历,输出遍历结果。

在这里插入图片描述

依次读取字符,拆分成子问题:
1.如果不是#,创建结点,存值,然后递归其左子树和右子树;
2.如果是#,说明不能构建结点了,直接返回NULL;

#include <stdio.h>typedef char  BTDataType;
typedef struct BinaryTreeNode{BTDataType data;struct BinaryTreeNode*left;struct BinaryTreeNode*right;}BTNode;BTNode*BinaryTreeCreat(char*arr,int*pi)
{if(arr[*pi]=='#'){(*pi)++;return NULL;}BTNode*node=(BTNode*)malloc(sizeof(BTNode));node->data=arr[*pi];(*pi)++;node->left=NULL;node->right=NULL;
node->left=BinaryTreeCreat(arr,pi);//递归构建左子树
node->right=BinaryTreeCreat(arr,pi);//递归构建右子树
return node;
}//中序遍历
void BinaryInOrder(BTNode*root)
{if(root==NULL)return;BinaryInOrder(root->left);printf("%c ",root->data);BinaryInOrder(root->right);
}int main() {
char ret[100];
scanf("%s",&ret );
int i=0;
BTNode*root= BinaryTreeCreat(ret,&i);
BinaryInOrder(root);
printf("\n");return 0;
}

衍生题

判断二叉树是否为完全二叉树

用一个队列来判断
将根从队尾入列,然后从队头出数据,出根的时候入它的左孩子和右孩子,NULL也入列。重复次操作,当出数据第一次遇到NULL时,停止入队列并且检查队列中是否还有数据,如果全部为NULL则此树时完全二叉树
如果队列中还有数据,则不是完全二叉树。

// 判断二叉树是否是完全二叉树
bool BinaryTreeComplete(BTNode* root)
{Queue q;QueueInit(&q);//初始化队列if (root != NULL)QueuePush(&q, root);while (!QueueEmpty(&q))//当队列不为空时,循环继续{BTNode* front = QueueFront(&q);//读取队头元素QueuePop(&q);//删除队头元素//遇到第一个NULL结点直接跳出循环if (front == NULL)break;QueuePush(&q, front->left);//出队元素的左孩子入队列(NULL也入)QueuePush(&q, front->right);//出队元素的右孩子入队列(NULL也入)}//前面遇到空以后,后面还有非空就不是完全二叉树while (!QueueEmpty(&q))//当队列不为空时,循环继续{BTNode* front = QueueFront(&q);//读取队头元素QueuePop(&q);//删除队头元素if (front){QueueDestroy(&q);//销毁队列return false;}}//没有遇到说明是完全二叉树QueueDestroy(&q);//销毁队列return true;
}

判断二叉树是否为单值二叉树

单值二叉树,所有结点的值都相同的二叉树即为单值二叉树,判断某一棵二叉树是否是单值二叉树的一般步骤如下:
 1.判断根的左孩子的值与根结点是否相同。
 2.判断根的右孩子的值与根结点是否相同。
 3.判断以根的左孩子为根的二叉树是否是单值二叉树。
 4.判断以根的右孩子为根的二叉树是否是单值二叉树。
若满足以上情况,则是单值二叉树。

bool isUnivalTree(struct TreeNode* root) {if(root==NULL)return true;if(root->left&&root->left->val!=root->val) return false;if(root->right&&root->right->val!=root->val)return false;return isUnivalTree(root->left)&&isUnivalTree(root->right);
}

判断两颗二叉树是否相同

拆分成子问题:
先判断根是否为空
再比较根的左子树是否相同
再比较跟根的右子树是否相同

bool isSameTree(struct TreeNode* p, struct TreeNode* q) 
{if(p==NULL&&q==NULL)return true;if(p==NULL||q==NULL)return false;if(p->val!=q->val)return false;return  isSameTree(p->left,q->left)&&isSameTree(p->right,q->right);
}

判断二叉树是否为对称二叉树

实际上就是要判断根节点的左右两个子树是否镜像对称。因此,其解决方案为:按照对称的方式遍历左右子树,比较同时遍历的节点是否一致。而且在遍历过程中,只有两个子树的根节点对称了,继续比较左右子树是否对称才有意义,因此我们使用"中序遍历"(其实不是严格的中序遍历,只是我们先比较根节点)

bool isSameTree(struct TreeNode* p, struct TreeNode* q) {if(p==NULL&&q==NULL)return true;if(p==NULL||q==NULL)return false;if(p->val!=q->val)return false;return  isSameTree(p->left,q->right)&&isSameTree(p->right,q->left);}bool isSymmetric(struct TreeNode* root) {if(root==NULL)return true;return isSameTree(root->left,root->right);}

判断一颗二叉树是否为另一颗二叉树的子树

两个树都是空树,返回true
如果两个树一个是空,一个不是空,不包含
两个树都是非空,比较根节点的值是不是相等,如果相等的话,比较一下p和q是不是相同的树
递归的判定一下,p是否被q的左子树包含
递归的判定一下,p是否被q的右子树包含。

bool isSameTree(struct TreeNode* p, struct TreeNode* q) {if(p==NULL&&q==NULL)return true;if(p==NULL||q==NULL)return false;if(p->val!=q->val)return false;return  isSameTree(p->left,q->left)&&isSameTree(p->right,q->right);
}bool isSubtree(struct TreeNode* root, struct TreeNode* subRoot){if(root==NULL)return false;if(isSameTree(root->left,subRoot))return true;return isSubtree(root->left,subRoot)||isSubtree(root->right,subRoot);}

判断二叉树是否为平衡二叉树

如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。
子问题:
求出左子树的深度。
求出右子树的深度。
若左子树与右子树的深度差的绝对值不超过1,并且左右子树也是平衡二叉树,则该树是平衡二叉树。

int max(int x,  int y)
{return x>y?x:y;
}
int height(struct TreeNode* root)
{if (root == NULL) return 0;return max(height(root->left), height(root->right)) + 1;
}bool isBalanced(struct TreeNode* root)
{if (root == NULL) return true;//左右子树高度差的绝对值不超过1 && 其左子树是平衡二叉树 && 其右子树是平衡二叉树return fabs(height(root->left) - height(root->right)) <= 1 && isBalanced(root->left) &&isBalanced(root->right);//fabs取绝对值,要用要包含头文件#include<math.h>
}

翻转二叉树

子问题:
 翻转左子树。
 翻转右子树。
 交换左右子树的位置。

//翻转二叉树
struct TreeNode* invertTree(struct TreeNode* root)
{if (root == NULL)//根为空,直接返回return root;struct TreeNode* left = invertTree(root->left);//翻转左子树struct TreeNode* right = invertTree(root->right);//翻转右子树//左右子树位置交换root->left = right;root->right = left;return root;
}

http://www.ppmy.cn/news/1463632.html

相关文章

【Redis】 关于 Redis 集合类型

文章目录 &#x1f343;前言&#x1f333;普通命令&#x1f6a9;sadd&#x1f6a9;smembers&#x1f6a9;sismember&#x1f6a9;scard&#x1f6a9;spop&#x1f6a9;smove&#x1f6a9;srem &#x1f332;集合间操作&#x1f6a9;sinter&#x1f6a9;sinterstore&#x1f6a9…

ECMAScript 深度解析:现代 JavaScript 综合指南

JavaScript&#xff0c;作为无所不在的 Web 语言&#xff0c;其背后的标准规范称为 ECMAScript。无论您是经验丰富的 Web 开发人员还是刚开始编程之旅的新手&#xff0c;理解 ECMAScript 都是释放 JavaScript 全部潜能并构建动态交互式应用程序的关键。在本文中&#xff0c;我们…

RabbitMQ不完整的笔记

同步的不足 1、拓展性差&#xff0c;当要添加功能时&#xff0c;需要在原来的功能代码上做修改&#xff0c;高耦合。 2、性能下降&#xff0c;调用者需要等待服务提供者执行完返回结果后&#xff0c;才能继续向下执行 3、级联失败&#xff0c;由于我们是基于OpenFeign调用交易…

C++进阶之路:何为运算符重载、赋值运算符重载与前后置++重载(类与对象_中篇)

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…

掌握SQL注入检测:深入理解SQLMAP工具

引言 在网络安全领域&#xff0c;SQL注入是一个广泛存在的漏洞&#xff0c;它允许攻击者通过Web应用对数据库执行非法的SQL命令。SQLMAP是检测这类漏洞的顶尖工具之一。本文将深入探讨SQLMAP工具&#xff0c;从其基本介绍到高级使用技巧&#xff0c;帮助读者全面理解并有效运用…

Java基础入门day57

day57 JSP、Servlet&#xff0c;Java bean和JDBC整合项目 index.jsp页面 <% page contentType"text/html; charsetUTF-8" pageEncoding"UTF-8" %> <!DOCTYPE html> <html> <head><title>JSP - Hello World</title> …

Spring MVC的请求流程

Spring MVC&#xff08;Model-View-Controller&#xff09;是一种基于Java的实现了MVC设计模式的轻量级Web框架。它通过一套注解&#xff0c;可以快速地搭建一个可扩展、易维护的Web应用程序。下面是Spring MVC处理请求的基本流程&#xff1a; 用户发起请求&#xff1a;用户通过…

2024电激世界脉动-中国汽车品牌全球化制胜手册

来源&#xff1a;奥美Ogilvy&#xff1a; 近期历史回顾&#xff1a; 2024中国宏观经济专题报告-数据要素市场建设 2023-2024年度报告.pdf 2024制药与生化医疗技术产业链白皮书.pdf 从可再生能源到绿氢-中国投资助力埃及能源转型.pdf 2024有机旅行中国行业指引.pdf 2024中国技术…

Go源码--sync库(1)

简介 这篇主要介绍 sync.Once、sync.WaitGroup和sync.Mutex sync.Once once 顾名思义 只执行一次 废话不说 我们看源码 英文介绍直接略过了 感兴趣的建议读一读 获益匪浅 其结构体如下 Once 是一个严格只执行一次的object type Once struct {// 建议看下源码的注解&#xf…

Web组态可视化编辑器 快速绘制组态图

演示地址&#xff1a;by组态[web组态插件] 随着工业智能制造的发展&#xff0c;工业企业对设备可视化、远程运维的需求日趋强烈&#xff0c;传统的单机版组态软件已经不能满足越来越复杂的控制需求&#xff0c;那么实现Web组态可视化界面成为了主要的技术路径。 行业痛点 对于…

postman调用Grpc

环境&#xff1a; .net6.0 一、准备 安装nuget&#xff1a; Grpc.AspNetCore Google.Protobuf Grpc.Core.Api Grpc.Tools Grpc.AspNetCore.Server.Reflection Program.cs&#xff1a; public class Program{public static void Main(string[] args){var builder WebApplicat…

OpenCV Haar小波变换

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 图像Haar小波变换是一种基于小波分析的信号处理技术,特别适用于图像处理领域。以下是关于图像Haar小波变换过程: 分解:(1)假设原始图像为f(x,y),其中(x,y)表示图像上的像素坐标。 (2)对原始图像进行Haar小…

python web自动化(Pytest实战)

1.UnitTest框架与Pytest框架对⽐ 1&#xff09; unittest框架介绍 Unittest则是Python语⾔的标准单元测试框架。 Unittest⽀持⾃动化测试&#xff0c;测试⽤例的初 始化、关闭和测试⽤例的聚合等功能&#xff0c;它有⼀个很重要的特性&#xff…

瑞吉外卖项目学习笔记(一)

项目展示&#xff1a; 一、软件开发整体介绍 1.1 软件开发流程 作为软件开发人员&#xff0c;我们的主要工作是在 编码阶段 1.2 角色分工 1.3 软件环境 二、瑞吉外面项目介绍 2.1 项目介绍 系统管理后台页面&#xff1a; 移动端页面&#xff1a; 2.2 产品原型展示 产品原型是…

Python库之PyQuery的高级用法深度解析

Python库之PyQuery的高级用法深度解析 引言 PyQuery是一个强大的Python库&#xff0c;它提供了类似于jQuery的语法来解析和操作HTML和XML文档。虽然PyQuery的基本用法已经相当直观&#xff0c;但本文将深入探讨一些高级用法&#xff0c;帮助开发者更高效地处理复杂的HTML文档…

若依 ruoyi-vue SpringBoot聊天敏感词过滤sensitive-word

组件地址 https://github.com/houbb/sensitive-word 网上博客版本不是最新&#xff0c;查看官方文档&#xff0c;基于0.16.1整理总结&#xff0c;快速上手 pom文件引入 <dependency><groupId>com.github.houbb</groupId><artifactId>sensitive-word…

图像处理之计算物体的方向(C++)

图像处理之计算物体的方向&#xff08;C&#xff09; 文章目录 图像处理之计算物体的方向&#xff08;C&#xff09;前言一、PCA获取物体主要方向1.原理2.代码实现 二、Hu矩获取物体主要方向1.原理2.代码实现 总结 前言 在图像处理中&#xff0c;物体的方向&#xff08;倾斜角…

Python每秒1000次压测

Molotov是一个用Python编写的轻量级HTTP负载测试工具,旨在帮助开发者进行简单的性能测试和压力测试。它通过模拟大量并发用户访问来测试Web服务的响应时间、吞吐量以及稳定性。Molotov特别强调易用性和可扩展性,允许用户自定义场景和断言来更好地适应不同应用的测试需求。 安…

Docker拉取镜像报错:x509: certificate has expired or is not yet v..

太久没有使用docker进行镜像拉取&#xff0c;今天使用docker-compose拉取mongo发现报错&#xff08;如下图&#xff09;&#xff1a; 报错信息翻译&#xff1a;证书已过期或尚未有效。 解决办法&#xff1a; 1.一般都是证书问题或者系统时间问题导致&#xff0c;可以先执行 da…

深度学习模型在OCR中的可解释性问题与提升探讨

摘要&#xff1a; 随着深度学习技术在光学字符识别&#xff08;OCR&#xff09;领域的广泛应用&#xff0c;人们对深度学习模型的可解释性问题日益关注。本文将探讨OCR中深度学习模型的可解释性概念及其作用&#xff0c;以及如何提高可解释性&#xff0c;使其在实际应用中更可…