1. 关联式容器
我们已经接触过STL中的部分容器,比如:vector、list、deque、 forward_list(C++11)等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面存储的是元素本身。那什么是关联式容器?它与序列式容器有什么区别?
关联式容器也是用来存储数据的,与序列式容器不同的是,其里面存储的是结构的键值对,在数据检索时比序列式容器效率更高。
2. 键值对
用来表示具有一一对应关系的一种结构,该结构中一般只包含两个成员变量key和value,key代 表键值,value表示与key对应的信息。比如:现在要建立一个英汉互译的字典,那该字典中必然 有英文单词与其对应的中文含义,而且,英文单词与其中文含义是一一对应的关系,即通过该应 该单词,在词典中就可以找到与其对应的中文含义。
SGI-STL中关于键值对的定义:
template <class T1, class T2>
struct pair
{
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;
pair(): first(T1()), second(T2())
{}
pair(const T1& a, const T2& b): first(a), second(b)
{}
};
3. 树形结构的关联式容器
根据应用场景的不同,STL总共实现了两种不同结构的管理式容器:树型结构与哈希结构。树型结 构的关联式容器主要有四种:map、set、multimap、multiset。这四种容器的共同点是:使用平衡搜索树(即红黑树)作为其底层结果,容器中的元素是一个有序的序列。下面一依次介绍每一个容器。
3.1 set
3.1.1 set的介绍
set文档
1. set是按照一定次序存储元素的容器;
2. 在set中,元素的value也标识它(value就是key,类型为T),并且每个value必须是唯一的。set中的元素不能在容器中修改(元素总是const),但是可以从容器中插入或删除它们;
3. 在内部,set中的元素总是按照其内部比较对象(类型比较)所指示的特定严格弱排序准则进行排序;
4. set容器通过key访问单个元素的速度通常比unordered_set容器慢,但它们允许根据顺序对子集进行直接迭代;
5. set在底层是用二叉搜索树(红黑树)实现的。
注意:
1. 与map/multimap不同,map/multimap中存储的是真正的键值对,set中只放 value,但在底层实际存放的是由构成的键值对;
2. set中插入元素时,只需要插入value即可,不需要构造键值对;
3. set中的元素不可以重复(因此可以使用set进行去重);
4. 使用set的迭代器遍历set中的元素,可以得到有序序列;
5. set中的元素默认按照小于来比较;
6. set中查找某个元素,时间复杂度为:log_2 n;
7. set中的元素不允许修改(为什么?);
8. set中的底层使用二叉搜索树(红黑树)来实现。
3.1.2 set的使用
1. set的模板参数列表
T: set中存放元素的类型,实际在底层存储的键值对;
Compare:set中元素默认按照小于来比较;
Alloc:set中元素空间的管理方式,使用STL提供的空间配置器管理。
2. set的构造
函数声明 | 功能介绍 |
set (const Compare& comp = Compare(), const Allocator& = Allocator() ); | 构造空的set |
set (InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator() ); | 用[first, last)区 间中的元素构造 set |
set ( const set<Key, Compare, Allocator>& x); | set的拷贝构造 |
3. set的迭代器
函数声明 | 功能介绍 |
iterator begin() | 返回set中起始位置元素的迭代器 |
iterator end() | 返回set中最后一个元素后面的迭代器 |
const_iterator cbegin() const | 返回set中起始位置元素的const迭代器 |
const_iterator cend() const | 返回set中最后一个元素后面的const迭代器 |
reverse_iterator rbegin() | 返回set第一个元素的反向迭代器,即end |
reverse_iterator rend() | 返回set最后一个元素下一个位置的反向迭代器, 即rbegin |
const_reverse_iterator crbegin() const | 返回set第一个元素的反向const迭代器,即cend |
const_reverse_iterator crend() const | 返回set最后一个元素下一个位置的反向const迭 代器,即crbegin |
4.set的容量
函数声明 | 功能介绍 |
bool empty ( ) const | 检测set是否为空,空返回true,否则返回true |
size_type size() const | 返回set中有效元素的个数 |
5. set修改操作
函数声明 | 功能介绍 |
pair <iterator, bool> insert ( const value_type& x ) | 在set中插入元素x,实际插入的是构成的 键值对,如果插入成功,返回,如果插入失败,说明x在set中已经 存在,返回 |
void erase ( iterator position ) | 删除set中position位置上的元素 |
size_type erase ( const key_type& x ) | 删除set中值为x的元素,返回删除的元素的个数 |
void erase ( iterator first, iterator last ) | 删除set中[first, last)区间中的元素 |
void swap ( set<Key, Compare, Allocator>& st ); | 交换set中的元素 |
void clear () | 将set中的元素清空 |
iterator find ( const key_type& x ) const | 返回set中值为x的元素的位置 |
size_type count ( const key_type& x ) const | 返回set中值为x的元素的个数 |
6. set的使用举例
#include <set>
void TestSet()
{// 用数组array中的元素构造setint array[] = { 1, 3, 5, 7, 9, 2, 4, 6, 8, 0, 1, 3, 5, 7, 9, 2, 4,
6, 8, 0 };set<int> s(array, array+sizeof(array)/sizeof(array));cout << s.size() << endl;// 正向打印set中的元素,从打印结果中可以看出:set可去重for (auto& e : s)cout << e << " ";cout << endl;// 使用迭代器逆向打印set中的元素for (auto it = s.rbegin(); it != s.rend(); ++it)cout << *it << " ";cout << endl;// set中值为3的元素出现了几次cout << s.count(3) << endl;
}
3.2 map
3.2.1 map的介绍
map文档
1. map是关联容器,它按照特定的次序(按照key来比较)存储由键值key和值value组合而成的元 素;
2. 在map中,键值key通常用于排序和惟一地标识元素,而值value中存储与此键值key关联的 内容。键值key和值value的类型可能不同,并且在map的内部,key与value通过成员类型 value_type绑定在一起,为其取别名称为pair: typedef pair value_type;
3. 在内部,map中的元素总是按照键值key进行比较排序的;
4. map中通过键值访问单个元素的速度通常比unordered_map容器慢,但map允许根据顺序 对元素进行直接迭代(即对map中的元素进行迭代时,可以得到一个有序的序列);
5. map支持下标访问符,即在[]中放入key,就可以找到与key对应的value;
6. map通常被实现为二叉搜索树(更准确的说:平衡二叉搜索树(红黑树))。
3.2.2 map的使用
1. map的模板参数说明
key: 键值对中key的类型 T: 键值对中value的类型;
Compare: 比较器的类型,map中的元素是按照key来比较的,缺省情况下按照小于来比较,一般情况下(内置类型元素)该参数不需要传递,如果无法比较时(自定义类型),需要用户自己显式传递比较规则(一般情况下按照函数指针或者仿函数来传递);
Alloc:通过空间配置器来申请底层空间,不需要用户传递,除非用户不想使用标准库提供的空间配置器;
2. map的构造
函数声明 | 功能介绍 |
map() | 构造一个空的map |
3. map的迭代器
函数声明 | 功能介绍 |
begin()和end() | begin:首元素的位置,end最后一个元素的下一个位置 |
cbegin()和cend() | 与begin和end意义相同,但cbegin和cend所指向的元素不能修改 |
rbegin()和rend() | 反向迭代器,rbegin在end位置,rend在begin位置,其 ++和--操作与begin和end操作移动相反 |
crbegin()和crend() | 与rbegin和rend位置相同,操作相同,但crbegin和crend所指向的元素不能修改 |
4. map的容量与元素访问
函数声明 | 功能简介 |
bool empty ( ) const | 检测map中的元素是否为空,是返回 true,否则返回false |
size_type size() const | 返回map中有效元素的个数 |
mapped_type& operator[] (const key_type& k) | 返回去key对应的value |
注意:在元素访问时,有一个与operator[]类似的操作at()(该函数不常用)函数,都是通过key找到与key对应的value然后返回其引用,不同的是:当key不存在时,operator[]用默认value与key构造键值对然后插入,返回该默认value,at()函数直接抛异常。
5. map中元素的修改
函数声明 | 功能简介 |
pair <iterator, bool> insert ( const value_type& x ) | 在map中插入键值对x,注意x是一个键值 对,返回值也是键值对:iterator代表新插入 元素的位置,bool代表释放插入成功 |
void erase ( iterator position ) | 删除position位置上的元素 |
size_type erase ( const key_type& x ) | 删除键值为x的元素 |
void erase ( iterator first, iterator last ) | 删除[first, last)区间中的元素 |
void swap ( map<Key, T, Compare, Allocator>& mp ) | 交换两个map中的元素 |
void clear ( ) | 将map中的元素清空 |
iterator find ( const key_type& x ) | 在map中插入key为x的元素,找到返回该元 素的位置的迭代器,否则返回end |
const_iterator find ( const key_type& x ) const | 在map中插入key为x的元素,找到返回该元素的位置的const迭代器,否则返回cend |
size_type count ( const key_type& x ) const | 返回key为x的键值在map中的个数,注意 map中key是唯一的,因此该函数的返回值 要么为0,要么为1,因此也可以用该函数来检测一个key是否在map中 |
#include <string>
#include <map>
void TestMap()
{map<string, string> m;// 向map中插入元素的方式:// 将键值对<"peach","桃子">插入map中,用pair直接来构造键值对m.insert(pair<string, string>("peach", "桃子"));// 将键值对<"peach","桃子">插入map中,用make_pair函数来构造键值对m.insert(make_pair("banan", "香蕉"));// 借用operator[]向map中插入元素/*operator[]的原理是:用<key, T()>构造一个键值对,然后调用insert()函数将该键值对插入到map中如果key已经存在,插入失败,insert函数返回该key所在位置的迭代器如果key不存在,插入成功,insert函数返回新插入元素所在位置的迭代器operator[]函数最后将insert返回值键值对中的value返回*/// 将<"apple", "">插入map中,插入成功,返回value的引用,将“苹果”赋值给该引
用结果,m["apple"] = "苹果";// key不存在时抛异常
//m.at("waterme") = "水蜜桃";cout << m.size() << endl;// 用迭代器去遍历map中的元素,可以得到一个按照key排序的序列for (auto& e : m)cout << e.first << "--->" << e.second << endl;cout << endl;// map中的键值对key一定是唯一的,如果key存在将插入失败auto ret = m.insert(make_pair("peach", "桃色"));if (ret.second)cout << "<peach, 桃色>不在map中, 已经插入" << endl;elsecout << "键值为peach的元素已经存在:" << ret.first->first << "--->"
<< ret.first->second <<" 插入失败"<< endl;// 删除key为"apple"的元素m.erase("apple");if (1 == m.count("apple"))cout << "apple还在" << endl;elsecout << "apple被吃了" << endl;
}
【总结】
1. map中的的元素是键值对;
2. map中的key是唯一的,并且不能修改;
3. 默认按照小于的方式对key进行比较;
4. map中的元素如果用迭代器去遍历,可以得到一个有序的序列;
5. map的底层为平衡搜索树(红黑树),查找效率比较高O(log_2 N);
6. 支持[]操作符,operator[]中实际进行插入查找。
3.3 multiset
3.3.1 multiset的介绍
multiset文档
1. multiset是按照特定顺序存储元素的容器,其中元素是可以重复的;
2. 在multiset中,元素的value也会识别它(因为multiset中本身存储的就是组成 的键值对,因此value本身就是key,key就是value,类型为T),multiset元素的值不能在容器中进行修改(因为元素总是const的),但可以从容器中插入或删除;
3. 在内部,multiset中的元素总是按照其内部比较规则(类型比较)所指示的特定严格弱排序准则进行排序;
4. multiset容器通过key访问单个元素的速度通常比unordered_multiset容器慢,但当使用迭代器遍历时会得到一个有序序列;
5. multiset底层结构为二叉搜索树(红黑树)。
注意:
1. multiset中再底层中存储的是的键值对;
2. mtltiset的插入接口中只需要插入即可;
3. 与set的区别是,multiset中的元素可以重复,set是中value是唯一的;
4. 使用迭代器对multiset中的元素进行遍历,可以得到有序的序列;
5. multiset中的元素不能修改;
6. 在multiset中找某个元素,时间复杂度为O(log_2 N);
7. multiset的作用:可以对元素进行排序。
3.3.2 multiset的使用
#include <set>
void TestSet()
{int array[] = { 2, 1, 3, 9, 6, 0, 5, 8, 4, 7 };// 注意:multiset在底层实际存储的是<int, int>的键值对multiset<int> s(array, array + sizeof(array)/sizeof(array[0]));for (auto& e : s)cout << e << " ";cout << endl;return 0;
}
3.4 multimap
3.4.1 multimap的介绍
multimap文档
1. Multimaps是关联式容器,它按照特定的顺序,存储由key和value映射成的键值对,其中多个键值对之间的key是可以重复的;
2. 在multimap中,通常按照key排序和惟一地标识元素,而映射的value存储与key关联的内 容。key和value的类型可能不同,通过multimap内部的成员类型value_type组合在一起, value_type是组合key和value的键值对: typedef pair value_type;
3. 在内部,multimap中的元素总是通过其内部比较对象,按照指定的特定严格弱排序标准对 key进行排序的;
4. multimap通过key访问单个元素的速度通常比unordered_multimap容器慢,但是使用迭代 器直接遍历multimap中的元素可以得到关于key有序的序列;
5. multimap在底层用二叉搜索树(红黑树)来实现。
注意:multimap和map的唯一不同就是:map中的key是唯一的,而multimap中key是可以重复的。
3.4.2 multimap的使用
multimap中的接口可以参考map,功能都是类似的。
注意:
1. multimap中的key是可以重复的;
2. multimap中的元素默认将key按照小于来比较;
3. multimap中没有重载operator[]操作(同学们可思考下为什么?);
4. 使用时与map包含的头文件相同。
3.5 在OJ中的使用
1.前K个高频单词
class Solution {
public:struct kvCom{bool operator()(const pair<string, int>& kv1, const pair<string, int>& kv2){return kv1.second > kv2.second || (kv1.second == kv2.second && kv1.first < kv2.first);}};vector<string> topKFrequent(vector<string>& words, int k) {map<string, int> m;for (auto& e : words){m[e]++;}vector<pair<string, int>> v(m.begin(), m.end());sort(v.begin(), v.end(), kvCom());vector<string> ret;vector<pair<string, int>>::iterator it = v.begin();while (k--){ret.push_back(it->first);it++;}return ret;}
};
2.两个数组的交集
class Solution {
public:vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {// 先去重set<int> s1;for(auto e : nums1){s1.insert(e);}set<int> s2;for(auto e : nums2){s2.insert(e);}// set排过序,依次比较,小的一定不是交集,相等的是交集auto it1 = s1.begin();auto it2 = s2.begin();vector<int> ret;while(it1 != s1.end() && it2 != s2.end()){if(*it1 < *it2){it1++;}else if(*it2 < *it1){it2++;}else{ret.push_back(*it1);it1++;it2++;}}return ret;}
};