Pytorch入门实战: 06-VGG-16算法-Pytorch实现人脸识别

news/2024/9/23 0:23:12/

第P6周:VGG-16算法-Pytorch实现人脸识别

🍨 本文为🔗365天深度学习训练营 中的学习记录博客

🍖 原作者:K同学啊

🏡 我的环境:

  • 语言环境:Python3.8

  • 编译器:Jupyter Lab

  • 深度学习环境:Pytorch

    • torch==1.12.1+cu113

    • torchvision==0.13.1+cu113

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

python">import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
​
warnings.filterwarnings("ignore")             #忽略警告信息
​
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

输出:

python">device(type='cuda')

2. 导入数据

python">import os,PIL,random,pathlib
​
data_dir = './6-data/'
data_dir = pathlib.Path(data_dir)
​
data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames

输出:

python">['Angelina Jolie','Brad Pitt','Denzel Washington','Hugh Jackman','Jennifer Lawrence','Johnny Depp','Kate Winslet','Leonardo DiCaprio','Megan Fox','Natalie Portman','Nicole Kidman','Robert Downey Jr','Sandra Bullock','Scarlett Johansson','Tom Cruise','Tom Hanks','Will Smith']

输入:

python"># 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸# transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
​
total_data = datasets.ImageFolder("./6-data/",transform=train_transforms)
total_data

输出:

python">Dataset ImageFolderNumber of datapoints: 1800Root location: ./6-data/StandardTransform
Transform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))

输入:

python">total_data.class_to_idx

输出:

python">{'Angelina Jolie': 0,'Brad Pitt': 1,'Denzel Washington': 2,'Hugh Jackman': 3,'Jennifer Lawrence': 4,'Johnny Depp': 5,'Kate Winslet': 6,'Leonardo DiCaprio': 7,'Megan Fox': 8,'Natalie Portman': 9,'Nicole Kidman': 10,'Robert Downey Jr': 11,'Sandra Bullock': 12,'Scarlett Johansson': 13,'Tom Cruise': 14,'Tom Hanks': 15,'Will Smith': 16}

3. 划分数据集

python">train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

输出:

python">(<torch.utils.data.dataset.Subset at 0x2570a8b6680>,<torch.utils.data.dataset.Subset at 0x2570a8b67a0>)
python">batch_size = 32
​
train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
python">for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break

输出:

python">Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

二、调用官方的VGG-16模型

VGG-16(Visual Geometry Group-16)是由牛津大学视觉几何组(Visual Geometry Group)提出的一种深度卷积神经网络架构,用于图像分类和对象识别任务。VGG-16在2014年被提出,是VGG系列中的一种。VGG-16之所以备受关注,是因为它在ImageNet图像识别竞赛中取得了很好的成绩,展示了其在大规模图像识别任务中的有效性。

以下是VGG-16的主要特点:

  1. 深度:VGG-16由16个卷积层和3个全连接层组成,因此具有相对较深的网络结构。这种深度有助于网络学习到更加抽象和复杂的特征。

  2. 卷积层的设计:VGG-16的卷积层全部采用3x3的卷积核和步长为1的卷积操作,同时在卷积层之后都接有ReLU激活函数。这种设计的好处在于,通过堆叠多个较小的卷积核,可以提高网络的非线性建模能力,同时减少了参数数量,从而降低了过拟合的风险。

  3. 池化层:在卷积层之后,VGG-16使用最大池化层来减少特征图的空间尺寸,帮助提取更加显著的特征并减少计算量。

  4. 全连接层:VGG-16在卷积层之后接有3个全连接层,最后一个全连接层输出与类别数相对应的向量,用于进行分类。

VGG-16结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示;

  • 3个全连接层(Fully connected Layer),用classifier表示;

  • 5个池化层(Pool layer)。

VGG-16 包含了16个隐藏层(13个卷积层和3个全连接层),故称为 VGG-16

python">from torchvision.models import vgg16
​
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))# 加载预训练模型,并且对模型进行微调
model = vgg16(pretrained = True).to(device) # 加载预训练的vgg16模型
​
for param in model.parameters():param.requires_grad = False # 冻结模型的参数,这样子在训练的时候只训练最后一层的参数
​
# 修改classifier模块的第6层(即:(6): Linear(in_features=4096, out_features=2, bias=True))
# 注意查看我们下方打印出来的模型
model.classifier._modules['6'] = nn.Linear(4096,len(classeNames)) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
model.to(device)  
model

输出:

python">Using cuda device
​
VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace=True)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace=True)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace=True)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True)(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace=True)(2): Dropout(p=0.5, inplace=False)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace=True)(5): Dropout(p=0.5, inplace=False)(6): Linear(in_features=4096, out_features=17, bias=True))
)

三、 训练模型

1. 编写训练函数

python"># 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)
​train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batches
​return train_acc, train_loss

2. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

python">def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
​test_acc  /= sizetest_loss /= num_batches
​return test_acc, test_loss

3. 设置动态学习率

python"># def adjust_learning_rate(optimizer, epoch, start_lr):
#     # 每 2 个epoch衰减到原来的 0.98
#     lr = start_lr * (0.92 ** (epoch // 2))
#     for param_group in optimizer.param_groups:
#         param_group['lr'] = lr
​
learn_rate = 1e-4 # 初始学习率
# optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)

调用官方动态学习率接口

与上面方法是等价的

python"># 调用官方动态学习率接口时使用
lambda1 = lambda epoch: 0.92 ** (epoch // 4)
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

👉 调用官方接口示例:👉

该代码块仅为代码讲解示例,不是整体程序的一部分

python"># 代码讲解示例
model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)
​
for epoch in range(20):for input, target in dataset:optimizer.zero_grad()output = model(input)loss = loss_fn(output, target)loss.backward()optimizer.step()scheduler.step()

更多的官方动态学习率设置方式可参考:torch.optim — PyTorch 2.2 documentation

4. 正式训练

model.train()model.eval()训练营往期文章中有详细的介绍。请注意观察我是如何保存最佳模型,与TensorFlow2的保存方式有何异同。

python">import copy
​
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
epochs     = 40
​
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
​
best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标
​
for epoch in range(epochs):# 更新学习率(使用自定义学习率时使用)# adjust_learning_rate(optimizer, epoch, learn_rate)model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳模型到 best_modelif epoch_test_acc > best_acc:best_acc   = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)
​
print('Done')

输出:

python">Epoch: 1, Train_acc:6.2%, Train_loss:2.898, Test_acc:5.6%, Test_loss:2.845, Lr:1.00E-04
Epoch: 2, Train_acc:6.8%, Train_loss:2.873, Test_acc:7.8%, Test_loss:2.811, Lr:1.00E-04
Epoch: 3, Train_acc:8.1%, Train_loss:2.840, Test_acc:8.6%, Test_loss:2.811, Lr:1.00E-04......
Epoch:37, Train_acc:20.8%, Train_loss:2.455, Test_acc:16.9%, Test_loss:2.479, Lr:4.72E-05
Epoch:38, Train_acc:18.1%, Train_loss:2.454, Test_acc:16.9%, Test_loss:2.471, Lr:4.72E-05
Epoch:39, Train_acc:20.6%, Train_loss:2.461, Test_acc:16.9%, Test_loss:2.476, Lr:4.72E-05
Epoch:40, Train_acc:20.3%, Train_loss:2.446, Test_acc:17.2%, Test_loss:2.458, Lr:4.34E-05
Done

四、 结果可视化

1. Loss与Accuracy图

python">import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
​
epochs_range = range(epochs)
​
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
​
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
​
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2. 指定图片进行预测

python">from PIL import Image 
​
classes = list(total_data.class_to_idx)
​
def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')plt.imshow(test_img)  # 展示预测的图片
​test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)
​_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')# 预测训练集中的某张照片
predict_one_image(image_path='./6-data/Angelina Jolie/001_fe3347c0.jpg', model=model, transform=train_transforms, classes=classes)

输出:

预测结果是:Angelina Jolie

3. 模型评估

python">best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss

输出:

python">(0.17222222222222222, 2.457642674446106)

python"># 查看是否与我们记录的最高准确率一致
epoch_test_acc

输出:

python">0.17222222222222222

五、个人总结

巩固了训练基本流程,了解了人脸识别基本原理


http://www.ppmy.cn/news/1428641.html

相关文章

IDEA中SVN 的使用

文章目录 前言一、svn安装二、IDEA集成SVN总结 前言 svn可以老牌的代码仓库了 说实话svn还是和git无法相比的,毕竟git有本地仓库的概念,可以很好的处理冲突,然而svn是没有本地仓库的概念的,所以只能拉取别人的代码,然后处理冲突后,才能提交代码; 由于最近的工作换成了用svn仓…

HTML:Form表单控件主要标签及属性。name属性,value属性,id属性详解。表单内容的传递流程,get和post数据传递样式。表单数据传递实例

form表单 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head> &…

电脑技巧:Bandicam班迪录屏介绍

目录 一、 软件简介 二、软件功能 2.1 屏幕录制 2.2 游戏录制 2.3 设备录制 2.4实时编辑与截图 2.5 轻量级软件 三、软件用途 3.1 教育培训 3.2 游戏直播与分享 3.3 企业办公 3.4 在线教学与知识分享 四、总结 今天给大家推荐一款非常实用的电脑录屏软件&#xf…

java的Spring XML和注解解析深入理解

理解 Spring XML 配置和注解的深层原理对于掌握 Spring Framework 至关重要。下面我将为你提供详细的代码介绍&#xff0c;涵盖了 Spring XML 配置和注解的使用。 1. Spring XML 配置 1.1 创建一个简单的 Java 类 package com.example.demo;public class MyService {public …

Spark-机器学习(1)什么是机器学习与MLlib算法库的认识

从这一系列开始&#xff0c;我会带着大家一起了解我们的机器学习&#xff0c;了解我们spark机器学习中的MLIib算法库&#xff0c;知道它大概的模型&#xff0c;熟悉并认识它。同时&#xff0c;本篇文章为个人spark免费专栏的系列文章&#xff0c;有兴趣的可以收藏关注一下&…

2024.04.07 校招 实习 内推 面经

绿*泡*泡VX&#xff1a; neituijunsir 交流*裙 &#xff0c;内推/实习/校招汇总表格 1、自动驾驶一周资讯 - 小米SU7城市领航8月全国开通&#xff1b;特斯拉FSD开启1个月免费试用&#xff1b;智己汽车“无图城市NOA”将在4月开启公测 自动驾驶一周资讯 - 小米SU7城市领航8月…

C++笔记之C++、C语言、PISIX、拿到线程函数的返回值的所有方法

C++笔记之C++、C语言、PISIX、拿到线程函数的返回值的所有方法 —— 2024-04-21 杭州 文章目录 C++笔记之C++、C语言、PISIX、拿到线程函数的返回值的所有方法1.C++ 使用 std::thread 和 std::promise/std::future2.C++ 使用 std::async3.C/POSIX 使用 pthread在 C++ 和 C 语言…

代码托管基础操作

在待上传代码文件夹中右键&#xff0c;打开Git Bash Here依次输入以下命令&#xff1a; git init(在本地初始化一个代码仓库&#xff0c;具体表现为会在你的文件夹里出现一个隐藏的.git文件夹) git add .&#xff08;先把代码放到本地的一个缓冲区&#xff09;添加当前目录下的…