【算法与数据结构】684、685、LeetCode冗余连接I II

news/2024/11/28 21:58:22/

文章目录

  • 一、684、冗余连接 I
  • 二、685、冗余连接 II
  • 三、完整代码

所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。

一、684、冗余连接 I

在这里插入图片描述
在这里插入图片描述

  思路分析:题目给出一个无向有环图,要求去掉一个边以后构成一个树(多叉树)。那么我们根据并查集理论,将所有的边加入到并查集中,前面的边先连上,边上的两个节点如果不在同一个集合中,就加入集合。如果两个节点已经出现在同一集合里,说明这两个节点已经连接在一起了,再加入一条后来的边就会构成环。因此去掉后来的这条边即可。

  程序如下

class Solution {
private:int n = 200005;		// 节点数量 200000vector<int> father = vector<int>(n, 0);	// C++里面的一种数据结构// 并查集初始化void init() {for (int i = 0; i < n; ++i) {father[i] = i;}}// 并查集里寻根的过程int find(int u) {return u == father[u] ? u : father[u] = find(father[u]);    // 路径压缩}// 判断 u 和 v是否找到同一个根bool isSame(int u, int v) {u = find(u);v = find(v);return u == v;}// 将v->u 这条边加入并查集void join(int u, int v) {u = find(u); // 寻找u的根v = find(v); // 寻找v的根if (u == v) return; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回father[v] = u;      // 根不同,则令v的父节点为u}
public:vector<int> findRedundantConnection(vector<vector<int>>& edges) {init();for (int i = 0; i < edges.size(); i++) {if (isSame(edges[i][0], edges[i][1])) return edges[i];else join(edges[i][0], edges[i][1]);}return { };}
};

复杂度分析:

  • 时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn),其中 n n n是图中边的个数,即edges数组的大小。需要遍历图中的 n n n条边,对于每条边,需要对两个节点查找祖先,如果两个节点的祖先不同则需要进行合并,需要进行2次查找和最多1次合并。一共需要进行 2 n 2n 2n次查找和最多 n n n次合并,因此总时间复杂度是 O ( 2 n log ⁡ ⁡ n ) = O ( n log ⁡ n ) O(2n \log ⁡n)=O(n \log n) O(2nlogn)=O(nlogn)
  • 空间复杂度: O ( n ) O(n) O(n),主要开销用于father数组。

二、685、冗余连接 II

在这里插入图片描述
在这里插入图片描述

  思路分析:题目说明,图原本是一棵树,只不过在不增加节点的情况下多了一条额外的边,我们需要把多出来的这一条边去除。与684题区别在于本题是有向图,684题是无向图。关于有向图有出度和入度的说法。出度是指节点发出的箭头数量,入度是指指向节点的箭头数量。根节点没有父节点,其他节点有且只有一个父节点,那么多出来的一条边就会改变了节点的入度数量,而出度的数量无法成为判断标准(一个父节点可以由多个子节点,出度数量不唯一)。出现入度为2的节点有以下两种情况:

在这里插入图片描述

  如果加入的这条边形成了有向环,那么入度不会改变:
在这里插入图片描述
  统计节点入度:

int inDegree[N] = {0}; // 记录节点入度
n = edges.size(); // 边的数量
for (int i = 0; i < n; i++) {inDegree[edges[i][1]]++; // 统计入度
}

  前两种入度为2的情况一定是删除入度为2的节点的两条边其中一条。题目还要求返回最后出现在二维数组的答案,也就是说要从后往前遍历,删除以后判断剩下的图是否构成树。如果说两条边都可以构成树,就删除最后一条边。

vector<int> vec; // 记录入度为2的边(如果有的话就两条边)
// 找入度为2的节点所对应的边,注意要倒序,因为优先返回最后出现在二维数组中的答案
for (int i = n - 1; i >= 0; i--) {if (inDegree[edges[i][1]] == 2) {vec.push_back(i);}
}
// 处理图中情况1 和 情况2
// 如果有入度为2的节点,那么一定是两条边里删一个,看删哪个可以构成树
if (vec.size() > 0) {if (isTreeAfterRemoveEdge(edges, vec[0])) {return edges[vec[0]];} else {return edges[vec[1]];}
}

  情况三,明确没有入度为2的情况,一定是有环,我们从后往前遍历,找到删除以后的那个可以构成树的边。那么如何判断一个图是否为树,应该应用到并查集了。因为如果两个点所在的边在添加图之前如果就可以在并查集里找到了相同的根,那么这条边添加上之后 这个图一定不是树了。

// 情况三:在有向图里找到删除的那条边,使其变成树vector<int> getRemoveEdge(const vector<vector<int>>& edges) {init(); // 初始化并查集for (int i = 0; i < n; i++) { // 遍历所有的边if (isSame(edges[i][0], edges[i][1])) { // 构成有向环了,就是要删除的边return edges[i];}join(edges[i][0], edges[i][1]);}return {};}

  程序如下

// 685、冗余连接II-并查集
class Solution2 {
private:static const int N = 1005;		// 节点数量 1005int father[N];int n;                          // 边的数量// 并查集初始化void init() {for (int i = 0; i < n; i++) {father[i] = i;}}// 并查集里寻根的过程int find(int u) {return u == father[u] ? u : father[u] = find(father[u]);    // 路径压缩}// 判断 u 和 v是否找到同一个根bool isSame(int u, int v) {u = find(u);v = find(v);return u == v;}// 将v->u 这条边加入并查集void join(int u, int v) {u = find(u); // 寻找u的根v = find(v); // 寻找v的根if (u == v) return; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回father[v] = u;      // 根不同,则令v的父节点为u}// 情况三:在有向图里找到删除的那条边,使其变成树vector<int> getRemoveEdge(const vector<vector<int>>& edges) {init(); // 初始化并查集for (int i = 0; i < n; i++) { // 遍历所有的边if (isSame(edges[i][0], edges[i][1])) { // 构成有向环了,就是要删除的边return edges[i];}join(edges[i][0], edges[i][1]);}return {};}// 删一条边之后判断是不是树bool isTreeAfterRemoveEdge(const vector<vector<int>>& edges, int deleteEdge) {init(); // 初始化并查集for (int i = 0; i < n; i++) {if (i == deleteEdge) continue;if (isSame(edges[i][0], edges[i][1])) { // 构成有向环了,一定不是树return false;}join(edges[i][0], edges[i][1]);}return true;}
public:vector<int> findRedundantDirectedConnection(vector<vector<int>>& edges) {int inDegree[N] = { 0 }; // 记录节点入度n = edges.size(); // 边的数量for (int i = 0; i < n; i++) {inDegree[edges[i][1]]++; // 统计入度}vector<int> vec; // 记录入度为2的边(如果有的话就两条边)// 找入度为2的节点所对应的边,注意要倒序,因为优先返回最后出现在二维数组中的答案for (int i = n - 1; i >= 0; i--) {if (inDegree[edges[i][1]] == 2) {vec.push_back(i);}}// 情况一和情况二:如果有入度为2的节点,那么一定是两条边里删一个,看删哪个可以构成树if (vec.size() > 0) {if (isTreeAfterRemoveEdge(edges, vec[0])) {return edges[vec[0]];}else {return edges[vec[1]];}}// 情况三:明确没有入度为2的情况,那么一定有有向环,找到构成环的边返回就可以了return getRemoveEdge(edges);}
};

复杂度分析:

  • 时间复杂度: O ( n log ⁡ n ) O(n \log n) O(nlogn)
  • 空间复杂度: O ( n ) O(n) O(n)

三、完整代码

# include <iostream>
# include <vector>
using namespace std;// 684、冗余连接I-并查集
class Solution {
private:int n = 200005;		// 节点数量 200000vector<int> father = vector<int>(n, 0);	// C++里面的一种数据结构// 并查集初始化void init() {for (int i = 0; i < n; i++) {father[i] = i;}}// 并查集里寻根的过程int find(int u) {return u == father[u] ? u : father[u] = find(father[u]);    // 路径压缩}// 判断 u 和 v是否找到同一个根bool isSame(int u, int v) {u = find(u);v = find(v);return u == v;}// 将v->u 这条边加入并查集void join(int u, int v) {u = find(u); // 寻找u的根v = find(v); // 寻找v的根if (u == v) return; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回father[v] = u;      // 根不同,则令v的父节点为u}
public:vector<int> findRedundantConnection(vector<vector<int>>& edges) {init();for (int i = 0; i < edges.size(); i++) {if (isSame(edges[i][0], edges[i][1])) return edges[i];else join(edges[i][0], edges[i][1]);}return { };}
};// 685、冗余连接II-并查集
class Solution2 {
private:static const int N = 1005;		// 节点数量 1005int father[N];int n;                          // 边的数量// 并查集初始化void init() {for (int i = 0; i < n; i++) {father[i] = i;}}// 并查集里寻根的过程int find(int u) {return u == father[u] ? u : father[u] = find(father[u]);    // 路径压缩}// 判断 u 和 v是否找到同一个根bool isSame(int u, int v) {u = find(u);v = find(v);return u == v;}// 将v->u 这条边加入并查集void join(int u, int v) {u = find(u); // 寻找u的根v = find(v); // 寻找v的根if (u == v) return; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回father[v] = u;      // 根不同,则令v的父节点为u}// 情况三:在有向图里找到删除的那条边,使其变成树vector<int> getRemoveEdge(const vector<vector<int>>& edges) {init(); // 初始化并查集for (int i = 0; i < n; i++) { // 遍历所有的边if (isSame(edges[i][0], edges[i][1])) { // 构成有向环了,就是要删除的边return edges[i];}join(edges[i][0], edges[i][1]);}return {};}// 删一条边之后判断是不是树bool isTreeAfterRemoveEdge(const vector<vector<int>>& edges, int deleteEdge) {init(); // 初始化并查集for (int i = 0; i < n; i++) {if (i == deleteEdge) continue;if (isSame(edges[i][0], edges[i][1])) { // 构成有向环了,一定不是树return false;}join(edges[i][0], edges[i][1]);}return true;}
public:vector<int> findRedundantDirectedConnection(vector<vector<int>>& edges) {int inDegree[N] = { 0 }; // 记录节点入度n = edges.size(); // 边的数量for (int i = 0; i < n; i++) {inDegree[edges[i][1]]++; // 统计入度}vector<int> vec; // 记录入度为2的边(如果有的话就两条边)// 找入度为2的节点所对应的边,注意要倒序,因为优先返回最后出现在二维数组中的答案for (int i = n - 1; i >= 0; i--) {if (inDegree[edges[i][1]] == 2) {vec.push_back(i);}}// 情况一和情况二:如果有入度为2的节点,那么一定是两条边里删一个,看删哪个可以构成树if (vec.size() > 0) {if (isTreeAfterRemoveEdge(edges, vec[0])) {return edges[vec[0]];}else {return edges[vec[1]];}}// 情况三:明确没有入度为2的情况,那么一定有有向环,找到构成环的边返回就可以了return getRemoveEdge(edges);}
};int main() {//   // 684、冗余连接I-并查集-测试案例//vector<vector<int>> edges = { {1, 2}, {1, 3}, {2, 3} };//Solution s1;//vector<int> result = s1.findRedundantConnection(edges);// 685、冗余连接II-并查集-测试案例vector<vector<int>> edges = { {1, 2}, {1, 3}, {2, 3} };Solution2 s2;vector<int> result = s2.findRedundantDirectedConnection(edges);for (vector<int>::iterator it = result.begin(); it < result.end(); it++) {cout << *it << ' ';}cout << endl;system("pause");return 0;
}

end


http://www.ppmy.cn/news/1360293.html

相关文章

Jenkins的使用GIT(4)

Jenkins的使用GIT 20211002 我们使用 Jenkins 集成外部 Git 仓库&#xff0c;实现对真实代码的拉取和构建。在这里&#xff0c;我们选用 Coding/Github/Gitee 等都可以作为我们的代码源 1 生成公钥私钥 首先&#xff0c;我们先来配置公钥和私钥。这是 Jenkins 访问 Git 私有库…

SQL Server——建表时为字段添加注释

在 MySQL 中&#xff0c;新建数据库表为字段添加注释可以使用 comment 属性来实现。SQL Server 没有 comment 属性&#xff0c;但是可以通过执行 sys.sp_addextendedproperty 这个存储过程添加扩展属性来实现相同的功能。 这个存储过程的参数定义如下&#xff1a; exec sys.s…

哈希表在Java中的使用和面试常见问题

当谈到哈希表在Java中的使用和面试常见问题时&#xff0c;以下是一些重要的点和常见问题&#xff1a; 哈希表在Java中的使用 HashMap 和 HashTable 的区别&#xff1a; HashMap 和 HashTable 都实现了 Map 接口&#xff0c;但它们有一些重要的区别&#xff1a; HashMap 是非线…

Java项目:27 基于SSM+JSP实现的大学校园兼职平台

作者主页&#xff1a;源码空间codegym 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 系统介绍 基于SSMJSP实现的大学校园兼职平台分为前台与管理员两块 管理端分为8大模块&#xff0c;分别是用户管理、兼职管理、帖子管理、聊天…

探索水下低光照图像检测性能,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建海底生物检测识别分析系统

海底这类特殊数据场景下的检测模型开发相对来说比较少&#xff0c;在前面的博文中也有一些涉及&#xff0c;感兴趣的话可以自行移步阅读即可&#xff1a; 《尝试探索水下目标检测&#xff0c;基于yolov5轻量级系列模型n/s/m开发构建海底生物检测系统》 《基于YOLOv5C3CBAMCBA…

PostgreSQL 实体化视图的使用

上周的教程中&#xff0c;通过 DVD Rental Database 示例&#xff0c;让我们了解了在 PostgreSQL 中创建实体化视图的过程。正如我们所了解的&#xff0c;PostgreSQL 实体化视图提供了一种强大的机制&#xff0c;通过预计算和存储查询结果集为物理表来提高查询性能。接下来的内…

音频的“隐形保镖”——音频数字水印

在互联网时代&#xff0c;多媒体数字资源可以快捷地传播和获取&#xff0c;但同时也导致了数字音频产品的非法扩散、非法拷贝和非法篡改猖獗&#xff0c;数字音频产品的完整性和版权保护问题越来越凸显。文档和图像可以添加水印&#xff0c;音频同样可以添加水印&#xff0c;让…

Postgresql源码(123)事务提交时三段资源释放分析ResourceOwnerRelease

0 总结 三段释放原因&#xff1a;因为如果先释放锁&#xff0c;没有释放一些共享资源&#xff08;比如pin住的buffer&#xff09;&#xff0c;别人拿到锁后发现我们仍然持有一些资源&#xff0c;就会有问题。所以三阶段释放主要是以锁为分界线&#xff0c;先释放锁保护的资源&…