书生·浦语大模型第四课作业

news/2025/2/19 13:34:21/

基础作业:

构建数据集,使用 XTuner 微调 InternLM-Chat-7B 模型, 让模型学习到它是你的智能小助手,效果如下图所示,本作业训练出来的模型的输出需要将不要葱姜蒜大佬替换成自己名字或昵称!

1.安装

# 如果你是在 InternStudio 平台,则从本地 clone 一个已有 pytorch 2.0.1 的环境:
/root/share/install_conda_env_internlm_base.sh xtuner0.1.9
# 如果你是在其他平台:
conda create --name xtuner0.1.9 python=3.10 -y# 激活环境
conda activate xtuner0.1.9
# 进入家目录 (~的意思是 “当前用户的home路径”)
cd ~
# 创建版本文件夹并进入,以跟随本教程
mkdir xtuner019 && cd xtuner019# 拉取 0.1.9 的版本源码
git clone -b v0.1.9  https://github.com/InternLM/xtuner
# 无法访问github的用户请从 gitee 拉取:
# git clone -b v0.1.9 https://gitee.com/Internlm/xtuner# 进入源码目录
cd xtuner# 从源码安装 XTuner
pip install -e '.[all]'

安装完后,就开始搞搞准备工作了。(准备在 oasst1 数据集上微调 internlm-7b-chat)

# 创建一个微调 oasst1 数据集的工作路径,进入
mkdir ~/ft-oasst1 && cd ~/ft-oasst1

2.3 微调

2.3.1 准备配置文件

XTuner 提供多个开箱即用的配置文件,用户可以通过下列命令查看

# 列出所有内置配置
xtuner list-cfg

在本案例中即:(注意最后有个英文句号,代表复制到当前路径)

cd ~/ft-oasst1
xtuner copy-cfg internlm_chat_7b_qlora_oasst1_e3 .

配置文件名的解释:

xtuner copy-cfg internlm_chat_7b_qlora_oasst1_e3 .

模型名internlm_chat_7b
使用算法qlora
数据集oasst1
把数据集跑几次跑3次:e3 (epoch 3 )
2.3.2 模型下载

由于下载模型很慢,用教学平台的同学可以直接复制模型。

ln -s /share/temp/model_repos/internlm-chat-7b ~/ft-oasst1/
2.3.3 数据集下载

https://huggingface.co/datasets/timdettmers/openassistant-guanaco/tree/main

由于 huggingface 网络问题,咱们已经给大家提前下载好了,复制到正确位置即可:

cd ~/ft-oasst1
# ...-guanaco 后面有个空格和英文句号啊
cp -r /root/share/temp/datasets/openassistant-guanaco .

 此时,当前路径的文件应该长这样:

|-- internlm-chat-7b
|   |-- README.md
|   |-- config.json
|   |-- configuration.json
|   |-- configuration_internlm.py
|   |-- generation_config.json
|   |-- modeling_internlm.py
|   |-- pytorch_model-00001-of-00008.bin
|   |-- pytorch_model-00002-of-00008.bin
|   |-- pytorch_model-00003-of-00008.bin
|   |-- pytorch_model-00004-of-00008.bin
|   |-- pytorch_model-00005-of-00008.bin
|   |-- pytorch_model-00006-of-00008.bin
|   |-- pytorch_model-00007-of-00008.bin
|   |-- pytorch_model-00008-of-00008.bin
|   |-- pytorch_model.bin.index.json
|   |-- special_tokens_map.json
|   |-- tokenization_internlm.py
|   |-- tokenizer.model
|   `-- tokenizer_config.json
|-- internlm_chat_7b_qlora_oasst1_e3_copy.py
`-- openassistant-guanaco|-- openassistant_best_replies_eval.jsonl`-- openassistant_best_replies_train.jsonl
2.3.4 修改配置文件

修改其中的模型和数据集为 本地路径

cd ~/ft-oasst1
vim internlm_chat_7b_qlora_oasst1_e3_copy.py

在vim界面完成修改后,请输入:wq退出。假如认为改错了可以用:q!退出且不保存。当然我们也可以考虑打开python文件直接修改,但注意修改完后需要按下Ctrl+S进行保存。

减号代表要删除的行,加号代表要增加的行。

# 修改模型为本地路径
- pretrained_model_name_or_path = 'internlm/internlm-chat-7b'
+ pretrained_model_name_or_path = './internlm-chat-7b'# 修改训练数据集为本地路径
- data_path = 'timdettmers/openassistant-guanaco'
+ data_path = './openassistant-guanaco'

常用超参

参数名解释
data_path数据路径或 HuggingFace 仓库名
max_length单条数据最大 Token 数,超过则截断
pack_to_max_length是否将多条短数据拼接到 max_length,提高 GPU 利用率
accumulative_counts梯度累积,每多少次 backward 更新一次参数
evaluation_inputs训练过程中,会根据给定的问题进行推理,便于观测训练状态
evaluation_freqEvaluation 的评测间隔 iter 数
............

如果想把显卡的现存吃满,充分利用显卡资源,可以将 max_length 和 batch_size 这两个参数调大。

2.3.5 开始微调

训练:

xtuner train ${CONFIG_NAME_OR_PATH}

也可以增加 deepspeed 进行训练加速:

xtuner train ${CONFIG_NAME_OR_PATH} --deepspeed deepspeed_zero2

例如,我们可以利用 QLoRA 算法在 oasst1 数据集上微调 InternLM-7B:

# 单卡
## 用刚才改好的config文件训练
xtuner train ./internlm_chat_7b_qlora_oasst1_e3_copy.py# 多卡
NPROC_PER_NODE=${GPU_NUM} xtuner train ./internlm_chat_7b_qlora_oasst1_e3_copy.py# 若要开启 deepspeed 加速,增加 --deepspeed deepspeed_zero2 即可

 微调得到的 PTH 模型文件和其他杂七杂八的文件都默认在当前的 ./work_dirs 中。

跑完训练后,当前路径应该长这样:

|-- internlm-chat-7b
|-- internlm_chat_7b_qlora_oasst1_e3_copy.py
|-- openassistant-guanaco
|   |-- openassistant_best_replies_eval.jsonl
|   `-- openassistant_best_replies_train.jsonl
`-- work_dirs`-- internlm_chat_7b_qlora_oasst1_e3_copy|-- 20231101_152923|   |-- 20231101_152923.log|   `-- vis_data|       |-- 20231101_152923.json|       |-- config.py|       `-- scalars.json|-- epoch_1.pth|-- epoch_2.pth|-- epoch_3.pth|-- internlm_chat_7b_qlora_oasst1_e3_copy.py`-- last_checkpoint

2.3.6 将得到的 PTH 模型转换为 HuggingFace 模型,即:生成 Adapter 文件夹
mkdir hf
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm_chat_7b_qlora_oasst1_e3_copy.py ./work_dirs/internlm_chat_7b_qlora_oasst1_e3_copy/epoch_1.pth ./hf

2.4 部署与测试

2.4.1 将 HuggingFace adapter 合并到大语言模型:
xtuner convert merge ./internlm-chat-7b ./hf ./merged --max-shard-size 2GB
# xtuner convert merge \
#     ${NAME_OR_PATH_TO_LLM} \
#     ${NAME_OR_PATH_TO_ADAPTER} \
#     ${SAVE_PATH} \
#     --max-shard-size 2GB

2.4.2 与合并后的模型对话:
# 加载 Adapter 模型对话(Float 16)
xtuner chat ./merged --prompt-template internlm_chat# 4 bit 量化加载
# xtuner chat ./merged --bits 4 --prompt-template internlm_chat

2.4.3 Demo
  • 修改 cli_demo.py 中的模型路径
- model_name_or_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b"
+ model_name_or_path = "merged"
vim /root/code/InternLM/cli_demo.py

 微调过程截图:

 微调过程截图:

 微调过程截图:

 微调过程截图:

 训练完成后,AI人设已经变成了我定义的内容:目前只跑通了CLI命令行的测试验证效果:

 执行的脚本内容:cli_demo.py

import torch
from transformers import AutoTokenizer, AutoModelForCausalLMmodel_name_or_path = "/root/personal_assistant/config/work_dirs/hf_merge"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""messages = [(system_prompt, '')]print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")while True:input_text = input("User  >>> ")input_text.replace(' ', '')if input_text == "exit":breakresponse, history = model.chat(tokenizer, input_text, history=messages)messages.append((input_text, response))print(f"robot >>> {response}")

 补充:

建议复制以下内容到 personal_assistant目录里,否则缺少必要的脚本

cp -r /root/code/InternLM/ /root/personal_assistant/code/InternLM/


http://www.ppmy.cn/news/1350529.html

相关文章

【开源】SpringBoot框架开发超市账单管理系统 JAVA+Vue+SpringBoot+MySQL

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统设计3.1 总体设计3.2 前端设计3.3 后端设计在这里插入图片描述 四、系统展示五、核心代码5.1 查询供应商5.2 查询商品5.3 新增超市账单5.4 编辑超市账单5.5 查询超市账单 六、免责说明 一、摘要 1.1 项目介绍 基于…

深度学习中的Droupout

1. 什么是Droupout Dropout的作用是防止过拟合。 Dropout在训练模型中是如何实现的呢?Dropout的做法是在训练过程中按一定比例(比例参数可设置)随机忽略或屏蔽一些神经元。这些神经元被随机“抛弃”,也就是说它们在正向传播过程…

[AIGC] 上传文件:后端处理还是直接阿里云OSS?

在构建Web应用时,我们经常需要处理用户上传的文件。这可能是图片、视频、文档等各种各样的文件。但是,上传文件的方式有很多种,最常见的两种方式是:通过后端处理,或者直接上传至云存储服务,如阿里云OSS。那…

常见的Linux操作系统发行版介绍

Linux操作系统是由芬兰程序员林纳斯托瓦兹(Linus Torvalds)于1991年首次发布的。由于其开源的特性,Linux系统拥有众多不同的发行版,每个发行版都有其独特的特点和用途。以下是一些常见的Linux操作系统发行版: …

react中hook封装一个table组件 与 useColumns组件

目录 1:react中hook封装一个table组件依赖CommonTable / index.tsx使用组件效果 2:useColumns组件useColumns.tsx使用 1:react中hook封装一个table组件 依赖 cnpm i react-resizable --save cnpm i ahooks cnpm i --save-dev types/react-r…

如何下载huggingface的模型到本地

https://huggingface.co/docs/transformers/installation#fetch-models-and-tokenizers-to-use-offline 以下代码下载模型到 ./123/chatglm3-6b from transformers import AutoTokenizer, AutoModel from huggingface_hub.hf_api import HfFolderHfFolder.save_token(hf_ZYmP…

面向对象2:继承

目录 2.1继承 2.2 继承的好处 2.3 权限修饰符 2.4 单继承、Object 2.5 方法重写 2.6 子类中访问成员的特点 2.7 子类中访问构造器的特点 面向对象1:静态 2.1继承 向对象编程之所以能够能够被广大开发者认可,有一个非常重要的原因,是…

下个目标,突破 10w+

转眼间,2023 年已经过去了,今天是大年初四,还有十来天就马上除夕了,迈入新的一年。 回顾 2023 年,如果让我给自己打分,我算是 7.5 分吧。 在这一年了,工作上表现平平,并没有什么突…