基于FPGA的图像Robert变换实现,包括tb测试文件和MATLAB辅助验证

news/2025/2/14 8:14:50/

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

fpga的结果导入到matlab显示:

2.算法运行软件版本

vivado2019.2

matlab2022a

3.部分核心程序

.......................................................................
module test_image;reg i_clk;
reg i_rst;
reg [7:0] Buffer [0:100000];
reg [7:0] II;
wire [7:0] o_robert;
integer fids,idx=0,dat;//D:\FPGA_Proj\FPGAtest\codepz\project_1\project_1.srcs\sources_1
initial 
beginfids = $fopen("D:\\FPGA_Proj\\FPGAtest\\codepz\\test0.bmp","rb");dat  = $fread(Buffer,fids);$fclose(fids);
endinitial 
begin
i_clk=1;
i_rst=1;
#1000;
i_rst=0;
end always #5 i_clk=~i_clk;always@(posedge i_clk) 
beginII<=Buffer[idx];idx<=idx+1;
endtops tops_u(
.i_clk    (i_clk),
.i_rst    (i_rst),
.i_I      (II),
.o_robert   (o_robert)
);integer fout1;
initial beginfout1 = $fopen("SAVEDATA.txt","w");
endalways @ (posedge i_clk)beginif(idx<=66623)$fwrite(fout1,"%d\n",o_robert);else$fwrite(fout1,"%d\n",0);
endendmodule
0X_025m

4.算法理论概述

        随着数字图像处理技术的不断发展,边缘检测作为图像处理的基本操作,其在机器视觉、自动驾驶、医学影像分析等领域的应用日益广泛。Robert交叉梯度算子是一种常用的边缘检测方法,具有简单、快速的特点。本文将详细介绍基于FPGA的Robert交叉梯度算子实现原理,包括算法原理、FPGA设计流程、实验结果与分析等。

      Robert交叉梯度算子是一种基于一阶微分的边缘检测方法,它通过计算图像中每个像素点在两个正交方向上的灰度差来检测边缘。具体地,对于图像中的每个像素点(P(x,y)),其Robert交叉梯度定义为:

(G_x = P(x,y) - P(x+1,y+1))

(G_y = P(x+1,y) - P(x,y+1))

         其中,(G_x)和(G_y)分别表示像素点在水平和垂直方向上的灰度差。然后,可以根据梯度幅度和方向来判断像素点是否属于边缘:

(G = \sqrt{G_x^2 + G_y^2})

       其中,(G)表示梯度幅度。通常可以设定一个阈值,当梯度幅度大于该阈值时,认为像素点属于边缘。

       基于FPGA的Robert交叉梯度算子实现主要包括以下几个步骤:图像数据输入、灰度化处理、Robert交叉梯度计算、边缘检测和结果输出。下面将详细介绍每个步骤的实现原理。

1 图像数据输入

       首先,需要将待处理的图像数据输入到FPGA中。可以通过外部存储器(如SDRAM)或摄像头等设备将图像数据传输到FPGA的片上存储器中。在FPGA内部,可以使用FIFO(First In First Out)等缓冲结构来暂存图像数据,以确保数据的连续性和稳定性。

2 Robert交叉梯度计算

       在灰度化处理后,接下来进行Robert交叉梯度的计算。根据Robert算子的定义,需要计算每个像素点在水平和垂直方向上的灰度差。在FPGA中,可以使用相邻像素的并行访问和计算来实现这一步骤。具体地,可以设计一个计算单元,该单元同时读取当前像素和其相邻像素的灰度值,并计算出水平和垂直方向上的灰度差。然后,根据灰度差计算出梯度幅度和方向。

3 边缘检测

       在计算出梯度幅度和方向后,需要进行边缘检测。可以根据设定的阈值来判断每个像素点是否属于边缘。如果梯度幅度大于阈值,则将该像素点标记为边缘点;否则,标记为非边缘点。在FPGA实现中,可以使用比较器等逻辑电路来实现阈值判断和边缘标记。

4 结果输出

         最后,将边缘检测的结果输出到外部设备或存储器中。可以将边缘标记的图像数据通过FIFO等缓冲结构输出到外部接口,以供后续处理或显示使用。同时,也可以将处理过程中的一些统计信息(如边缘点的数量、处理时间等)输出到外部接口,以供性能分析和优化使用。

5.算法完整程序工程

OOOOO

OOO

O


http://www.ppmy.cn/news/1280642.html

相关文章

SQLiteStudio安装指南

本博文源于笔者想要打开sqlite3的db文件&#xff0c;于是下载了SQLiteStudio&#xff0c;下载了它&#xff0c;sqlite3的文件随便查看&#xff0c;这里从零开始安装 文章目录 1、搜索官网网址2、开始下载3、开始安装4、开始使用5、总结 1、搜索官网网址 官网地址&#xff1a;…

使用ArcMap对工厂选址

文章目录 题目流程1&#xff0c;添加河流数据和高程数据2&#xff0c;对河流数据进行选取3&#xff0c;对高程数据进行选取并划定工厂选址范围1&#xff0c;栅格提取法2&#xff0c;重分类法 4&#xff0c;汇总 结果 题目 实验名称&#xff1a;工厂选址 实验目的及要求&#x…

pandas离线安装

文章目录 方法一方法二 pandas离线安装 方法一 先在一个能上网的机器上&#xff0c;使用pip安装好pandas及依赖库 将装好的包打包&#xff0c;拷贝到不能上网的目标机上 cd /usr/lib/python3.10/site-packages tar cf pandas.tgz numpy* openpyxl* pandas* psutil* pygments*…

在 Laravel 中,清空缓存大全

在 Laravel 中&#xff0c;清空缓存通常涉及到清除应用程序中的缓存文件和数据库查询缓存。以下是一些常用的清空缓存方法&#xff1a; 1. 清除路由缓存&#xff1a; Laravel 的路由缓存可以提高应用程序的性能&#xff0c;但在开发过程中&#xff0c;你可能需要频繁地更改路…

k8s学习 — (实践)第五章 服务发现

k8s学习 — &#xff08;实践&#xff09;第五章 服务发现 学习资料1 Service1.1 Service 的定义1.1.1 命令操作1.1.2 Endpoint 1.2 代理 k8s 外部服务1.2.1 各环境访问名称统一1.2.2 访问 k8s 集群外的其他服务1.2.3 项目迁移 1.3 反向代理外部域名1.4 常用类型1.4.1 ClusterI…

Angular 11到升级到 Angular 16

日新月异&#xff0c;与时俱进… 随着Angular版本不断更新&#xff0c;再看所开发的项目版本仍然是Angular 11&#xff0c;于是准备升级 截止发博日最版本是 v17.1.0&#xff0c;考虑到稳定性因素决定升级到v16版本 一&#xff1a;查看 升级指南 二&#xff1a;按照指南&…

使用Pycharm一键将.ui文件生成.py文件配置教程、一键打开QTDesigner教程

2df3621a-7ffd-4f18-9735-b86464b83a5b 前言 我痛恨所有将白嫖归为理所应当的猪&#x1f416;。 教程 打开pycharm之后&#xff0c;依次点击File->Settings->Tools->External Tools&#xff0c;进入如下界面&#xff1a; 1、配置快捷打开Qt Designer 点击号&…

线程管理(学习)

线程管理 在日常生活中&#xff0c;我们要完成一个大任务&#xff0c;一般会将它分解成多个简单、容易解决的小问题&#xff0c;小问题逐个被解决&#xff0c;大问题也就随之解决了。 在多线程操作系统中&#xff0c;也同样需要开发人员把一个复杂的应用分解成多个小的、可调…