SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测

news/2024/12/29 5:46:07/

SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测

目录

    • SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现GWO-CNN-GRU-selfAttention灰狼算法优化卷积门控循环单元融合自注意力机制多变量多步时间序列预测,灰狼算法优化学习率,卷积核大小,神经元个数,以最小MAPE为目标函数;
在这里插入图片描述

CNN卷积核大小:卷积核大小决定了CNN网络的感受野,即每个卷积层可以捕获的特征的空间范围。选择不同大小的卷积核可以影响模型的特征提取能力。较小的卷积核可以捕获更细粒度的特征,而较大的卷积核可以捕获更宏观的特征。

GRU门控单元个数:GRU是一种适用于序列数据的循环神经网络,其神经元个数决定了模型的复杂性和记忆能力。较多的GRU神经元可以提高模型的学习能力,但可能导致过拟合。

学习率:学习率是训练深度学习模型时的一个关键超参数,它控制每次参数更新的步长。学习率过大可能导致模型不稳定和发散,学习率过小可能导致训练过慢或陷入局部最小值。

自注意力层 (Self-Attention):Self-Attention自注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。自注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,自注意力机制可以用于对序列中不同时间步之间的相关性进行建模。

在这里插入图片描述
2.运行环境为Matlab2023a及以上,提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线);

3.excel数据集(负荷数据集),输入多个特征,输出单个变量,考虑历史特征的影响,多变量多步时间序列预测(多步预测即预测下一天96个时间点),main.m为主程序,运行即可,所有文件放在一个文件夹;

在这里插入图片描述
4.命令窗口输出SSE、RMSE、MSE、MAE、MAPE、R2、r多指标评价;
适用领域:负荷预测、风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测获取。

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Grey Wolf Optimizer
% 灰狼优化算法function [Alpha_score, Alpha_pos, Convergence_curve, bestPred,bestNet,bestInfo ] = GWO(SearchAgents_no, Max_iter, lb, ub, dim, fobj)
% 输入参数:
% SearchAgents_no:搜索个体的数量
% Max_iter:最大迭代次数
% lb:搜索空间的下界(一个1维向量)
% ub:搜索空间的上界(一个1维向量)
% dim:问题的维度
% fobj:要优化的目标函数,输入为一个位置向量,输出为一个标量% 初始化alpha、beta和delta的位置向量
Alpha_pos = zeros(1, dim);
Alpha_score = inf; % 对于最小化问题,请将其改为-infBeta_pos = zeros(1, dim);
Beta_score = inf; % 对于最小化问题,请将其改为-infDelta_pos = zeros(1, dim);
Delta_score = inf; % 对于最小化问题,请将其改为-inf% 初始化领导者的位置向量和得分Positions = ceil(rand(SearchAgents_no, dim) .* (ub - lb) + lb);Convergence_curve = zeros(1, Max_iter);l = 0; % 迭代计数器% 主循环
while l < Max_iterfor i = 1:size(Positions, 1)% 将超出搜索空间边界的搜索代理放回搜索空间内Flag4ub = Positions(i, :) > ub;Flag4lb = Positions(i, :) < lb;Positions(i, :) = (Positions(i, :) .* (~(Flag4ub + Flag4lb))) + ub .* Flag4ub + lb .* Flag4lb;% 计算每个搜索个体的目标函数值[fitness,Value,Net,Info] = fobj(Positions(i, :));% 更新Alpha、Beta和Delta的位置向量if fitness < Alpha_scoreAlpha_score = fitness;       % 更新Alpha的得分Alpha_pos = Positions(i, :); % 更新Alpha的位置向量bestPred = Value;bestNet = Net;bestInfo = Info;endif fitness > Alpha_score && fitness < Beta_scoreBeta_score = fitness;       % 更新Beta的得分Beta_pos = Positions(i, :); % 更新Beta的位置向量endif fitness > Alpha_score && fitness > Beta_score && fitness < Delta_scoreDelta_score = fitness;       % 更新Delta的得分Delta_pos = Positions(i, :); % 更新Delta的位置向量endenda = 2 - l * ((2) / Max_iter); % a从2线性减少到0% 更新搜索个体的位置向量for i = 1:size(Positions, 1)for j = 1:size(Positions, 2)r1 = rand(); % r1是[0,1]区间的随机数r2 = rand(); % r2是[0,1]区间的随机数A1 = 2 * a * r1 - a; % 参考文献中的公式(3.3)C1 = 2 * r2; % 参考文献中的公式(3.4)D_alpha = abs(C1 * Alpha_pos(j) - Positions(i, j)); % 参考文献中的公式(3.5)-part 1X1 = Alpha_pos(j) - A1 * D_alpha; % 参考文献中的公式(3.6)-part 1r1 = rand();r2 = rand();

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501


http://www.ppmy.cn/news/1273446.html

相关文章

React 状态

大家好&#xff0c;欢迎来到 React 状态的课程。在这一课中&#xff0c;我们将学习如何在 React 中使用状态。 什么是状态&#xff1f; 状态是组件的数据。组件的状态可以通过 this.state 对象访问。 class ComponentName extends React.Component {constructor(props) {sup…

【idea】解决sprintboot项目创建遇到的问题

目录 一、报错Plugin ‘org.springframework.boot:spring-boot-maven-plugin:‘ not found 二、报错java: 错误: 无效的源发行版&#xff1a;17 三、java: 无法访问org.springframework.web.bind.annotation.CrossOrigin 四、整合mybatis的时候&#xff0c;报java.lang.Ill…

2020 年网络安全应急响应分析报告

2020 年全年奇安信集团安服团队共参与和处置了全国范围内 660起网络安全应急响应事件。2020 年全年应急响应处置事件行业 TOP3 分别为:政府部门行业(146 起)医疗卫生行业(90 起)以及事业单位(61 起&#xff0c;事件处置数分别占应急处置所有行业的 22.1%、13.6%、9.2%。2020 年…

结构型设计模式(一):门面模式 组合模式

门面模式 Facade 1、什么是门面模式 门面模式&#xff08;Facade Pattern&#xff09;是一种结构型设计模式&#xff0c;旨在为系统提供一个统一的接口&#xff0c;以便于访问子系统中的一群接口。它通过定义一个高层接口&#xff0c;简化了客户端与子系统之间的交互&#xf…

VUE中的8种常规通信方式

文章目录 1.props传递数据(父向子)2.$emit触发自定义事件&#xff08;子向父&#xff09;3.ref&#xff08;父子&#xff09;4.EventBus&#xff08;兄弟组件&#xff09;5.parent或root&#xff08;兄弟组件&#xff0c;有共同祖辈&#xff09;6.attrs和listeners&#xff08;…

部署智能合约以及 javascript 调用合约函数(Web3项目二实战之三)

在上一篇 智能合约是Web3项目的核心要务(Web3项目二实战之二) ,我们已然为项目编写了智能合约,在攥写完智能合约后,该项目将完成了一大部分,剩下无非就是用户界面交互的内容。 然而,在码完了智能合约代码后,起着承前启后关键性的便是,前端界面与智能合约的交互。 智能…

C语言学习day09:运算符优先级

运算符优先级&#xff1a; //& 假如设一个int a; 给a一个变量&#xff1b; &a取a对应的地址 优先级运算符名称或含义使用形式结合方向说明1[1,2,3,4]数组下标数组名[常量表达形式]左到右()圆括号(表达式)/函数名(形参).成员选择(对象)对象.成员名->成员选择(指…

机器学习算法---时间序列

类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统计学检验箱…