【隐私计算】算术秘密分享的加法和乘法运算(Beaver Triple预处理)

news/2024/11/29 6:40:41/

在安全多方计算中(MPC)中,算术秘密分享是最基础的机制。一直有在接触,但是一直没有整理清楚最基础的加法和乘法计算流程。

算术秘密分享

概念: 一个位宽为 l l l-bit的数 x x x,被拆分为两个在 Z 2 l \mathbb{Z}_{2^l} Z2l环上的数之和。
形式化描述: 对于一个位宽为 l l l-bit的数 x x x,其算术秘密分享是 ⟨ x ⟩ A \langle x\rangle^A xA,则满足 x ≡ ⟨ x ⟩ 0 A + ⟨ x ⟩ 1 A m o d 2 l x \equiv \langle x\rangle^A_0+\langle x\rangle^A_1~\mathrm{mod}~2^l xx0A+x1A mod 2l,其中, ⟨ x ⟩ 0 A , ⟨ x ⟩ 1 A ∈ Z 2 l \langle x\rangle^A_0, \langle x\rangle^A_1 \in \mathbb{Z}_{2^l} x0A,x1AZ2l
Share(分享)算法
P i P_i Pi生成随机数 r ∈ R Z 2 l r\in_R\mathbb{Z}_{2^l} rRZ2l,令 ⟨ x ⟩ i A = x − r \langle x \rangle^A_i=x-r xiA=xr作为自己的share,并将随机数 r r r发给另一方 P 1 − i P_{1-i} P1i,即 ⟨ x ⟩ 1 − i A = r \langle x \rangle^A_{1-i}=r x1iA=r
Reconstruct(重构)算法
P 1 − i P_{1-i} P1i将自己的share发给 P i P_i Pi,然后 P i P_i Pi计算 x = ⟨ x ⟩ 0 A + ⟨ x ⟩ 1 A x=\langle x\rangle^A_0+\langle x\rangle^A_1 x=x0A+x1A重构真实的 x x x值。

算术秘密分享的加法

加法非常简单,两方在本地直接计算share的加法,即满足真实值的加法。
当计算 z = x + y z=x+y z=x+y时, P i P_i Pi在本地计算 ⟨ z ⟩ i A = ⟨ x ⟩ i A + ⟨ y ⟩ i A \langle z\rangle^A_i=\langle x\rangle^A_i+\langle y\rangle^A_i ziA=xiA+yiA
本地可加性很好证明, P 0 P_0 P0计算 ⟨ z ⟩ 0 A = ⟨ x ⟩ 0 A + ⟨ y ⟩ 0 A \langle z\rangle^A_0=\langle x\rangle^A_0+\langle y\rangle^A_0 z0A=x0A+y0A,同时 P 1 P_1 P1计算 ⟨ z ⟩ 1 A = ⟨ x ⟩ 1 A + ⟨ y ⟩ 1 A \langle z\rangle^A_1=\langle x\rangle^A_1+\langle y\rangle^A_1 z1A=x1A+y1A,于是, z = ⟨ z ⟩ 0 A + ⟨ z ⟩ 1 A = ⟨ x ⟩ 0 A + ⟨ y ⟩ 0 A + ⟨ x ⟩ 1 A + ⟨ y ⟩ 1 A = x + y z = \langle z\rangle^A_0+\langle z\rangle^A_1=\langle x\rangle^A_0+\langle y\rangle^A_0+\langle x\rangle^A_1+\langle y\rangle^A_1=x+y z=z0A+z1A=x0A+y0A+x1A+y1A=x+y,因此成立。
因此,在MPC中,秘密分享的加法只需简单的本地加法,不会引入任何通信开销。

算术秘密分享的乘法

相比于加法,乘法则复杂很多,需要依靠双方的通信来实现。
当计算 z = x ⋅ y z=x\cdot y z=xy时,需要依赖预处理阶段生成的乘法三元组(Beaver Triple): c = a ⋅ b c=a\cdot b c=ab,注意 a , b , c a, b, c a,b,c均与真实的输入 x , y x, y x,y无关。
下面是基于Beaver Triple计算秘密分享乘法的流程:

  1. P i P_i Pi本地计算 ⟨ e ⟩ i A = ⟨ x ⟩ i A − ⟨ a ⟩ i A \langle e\rangle^A_i=\langle x\rangle^A_i-\langle a\rangle^A_i eiA=xiAaiA ⟨ f ⟩ i A = ⟨ y ⟩ i A − ⟨ b ⟩ i A \langle f\rangle^A_i=\langle y\rangle^A_i-\langle b\rangle^A_i fiA=yiAbiA
  2. 双方共同计算(重构)出 e = ⟨ e ⟩ 0 A + ⟨ e ⟩ 1 A = x − a e=\langle e\rangle^A_0+\langle e\rangle^A_1=x-a e=e0A+e1A=xa f = ⟨ f ⟩ 0 A + ⟨ f ⟩ 1 A = y − b f=\langle f\rangle^A_0+\langle f\rangle^A_1=y-b f=f0A+f1A=yb
  3. P i P_i Pi本地计算 ⟨ z ⟩ i A = i ⋅ e ⋅ f + f ⋅ ⟨ a ⟩ i A + e ⋅ ⟨ b ⟩ i A + ⟨ c ⟩ i A \langle z\rangle^A_i=i\cdot e\cdot f+f\cdot \langle a\rangle^A_i+e\cdot \langle b\rangle^A_i+\langle c\rangle^A_i ziA=ief+faiA+ebiA+ciA
  4. 最后,重构输出 z = ⟨ z ⟩ 0 A + ⟨ z ⟩ 1 A z=\langle z\rangle^A_0+\langle z\rangle^A_1 z=z0A+z1A

证明:
⟨ z ⟩ 0 A = f ⋅ ⟨ a ⟩ 0 A + e ⋅ ⟨ b ⟩ 0 A + ⟨ c ⟩ 0 A \langle z\rangle^A_0=f\cdot \langle a\rangle^A_0+e\cdot \langle b\rangle^A_0+\langle c\rangle^A_0 z0A=fa0A+eb0A+c0A
⟨ z ⟩ 1 A = e ⋅ f + f ⋅ ⟨ a ⟩ 1 A + e ⋅ ⟨ b ⟩ 1 A + ⟨ c ⟩ 1 A \langle z\rangle^A_1=e\cdot f+f\cdot \langle a\rangle^A_1+e\cdot \langle b\rangle^A_1+\langle c\rangle^A_1 z1A=ef+fa1A+eb1A+c1A
z = ⟨ z ⟩ 0 A + ⟨ z ⟩ 1 A = e ⋅ f + a ⋅ f + e ⋅ b + c = ( x − a ) ( y − b ) + a ( y − b ) + ( x − a ) b + c = x y − b x − a y + a b + a y − a b + b x − a b + a b = x y z=\langle z\rangle^A_0+\langle z\rangle^A_1\\~~~=e\cdot f+a\cdot f+e\cdot b+c\\~~~=(x-a)(y-b)+a(y-b)+(x-a)b+c\\~~~=xy-bx-ay+ab+ay-ab+bx-ab+ab\\~~~=xy z=z0A+z1A   =ef+af+eb+c   =(xa)(yb)+a(yb)+(xa)b+c   =xybxay+ab+ayab+bxab+ab   =xy
故成立。

Beaver Triple的生成

上面已经介绍了基于Beaver Triple计算乘法的流程,但是需要注意, c = a b c=ab c=ab也是秘密分享的形式:
c = a b = ( ⟨ a ⟩ 0 A + ⟨ a ⟩ 1 A ) ( ⟨ b ⟩ 0 A + ⟨ b ⟩ 1 A ) = ⟨ a ⟩ 0 A ⟨ b ⟩ 0 A + ⟨ a ⟩ 1 A ⟨ b ⟩ 1 A + ⟨ a ⟩ 0 A ⟨ b ⟩ 1 A + ⟨ a ⟩ 1 A ⟨ b ⟩ 0 A c=ab\\~~~=(\langle a\rangle^A_0+\langle a\rangle^A_1)(\langle b\rangle^A_0+\langle b\rangle^A_1)\\~~~=\langle a\rangle^A_0 \langle b\rangle^A_0+\langle a\rangle^A_1 \langle b\rangle^A_1+\langle a\rangle^A_0\langle b\rangle^A_1+\langle a\rangle^A_1\langle b\rangle^A_0 c=ab   =(⟨a0A+a1A)(⟨b0A+b1A)   =a0Ab0A+a1Ab1A+a0Ab1A+a1Ab0A
可以看到,第一项 ⟨ a ⟩ 0 A ⟨ b ⟩ 0 A \langle a\rangle^A_0 \langle b\rangle^A_0 a0Ab0A和第二项 ⟨ a ⟩ 1 A ⟨ b ⟩ 1 A \langle a\rangle^A_1 \langle b\rangle^A_1 a1Ab1A均可以在 P 0 , P 1 P_0, P_1 P0,P1本地计算,因此无需通信。而重点就在于后两项 ⟨ a ⟩ 0 A ⟨ b ⟩ 1 A , ⟨ a ⟩ 1 A ⟨ b ⟩ 0 A \langle a\rangle^A_0\langle b\rangle^A_1, \langle a\rangle^A_1\langle b\rangle^A_0 a0Ab1A,a1Ab0A,两个share分别在两方,因此必然引入通信,通常我们将这两项称作“交叉项”或CrossTerm。
那么,Beaver Triple的生成,本质上也就是解决交叉项计算的问题。下面介绍两种常用的计算方式:

基于同态加密(HE)的Beaver Triple生成
流程如下:

  1. P 0 P_0 P0 E n c ( ⟨ a ⟩ 0 A ) Enc(\langle a\rangle^A_0) Enc(⟨a0A) E n c ( ⟨ b ⟩ 0 A ) Enc(\langle b\rangle^A_0) Enc(⟨b0A)发给 P 1 P_1 P1
  2. P 1 P_1 P1生成一个随机数 r r r,计算 d = E n c ( ⟨ a ⟩ 0 A ) ⟨ b ⟩ 1 A × E n c ( ⟨ b ⟩ 0 A ) ⟨ a ⟩ 1 A × E n c ( r ) d=Enc(\langle a\rangle^A_0)^{\langle b\rangle^A_1} \times Enc(\langle b\rangle^A_0)^{\langle a\rangle^A_1} \times Enc(r) d=Enc(⟨a0A)b1A×Enc(⟨b0A)a1A×Enc(r),然后将 d d d发给 P 0 P_0 P0
  3. P 0 P_0 P0计算 ⟨ c ⟩ 0 A = ⟨ a ⟩ 0 A + ⟨ b ⟩ 0 A + D e c ( d ) = ⟨ a ⟩ 0 A ⟨ b ⟩ 0 A + ⟨ a ⟩ 0 A ⟨ b ⟩ 1 A + ⟨ a ⟩ 1 A ⟨ b ⟩ 0 A + r \langle c\rangle^A_0=\langle a\rangle^A_0+\langle b\rangle^A_0+Dec(d)=\langle a\rangle^A_0\langle b\rangle^A_0+\langle a\rangle^A_0 \langle b\rangle^A_1+\langle a\rangle^A_1 \langle b\rangle^A_0+r c0A=a0A+b0A+Dec(d)=a0Ab0A+a0Ab1A+a1Ab0A+r
  4. P 1 P_1 P1计算 ⟨ c ⟩ 1 A = ⟨ a ⟩ 1 A ⟨ b ⟩ 1 A − r \langle c\rangle^A_1=\langle a\rangle^A_1\langle b\rangle^A_1-r c1A=a1Ab1Ar

证明:
c = ⟨ c ⟩ 0 A + ⟨ c ⟩ 1 A = ⟨ a ⟩ 0 A ⟨ b ⟩ 0 A + ⟨ a ⟩ 1 A ⟨ b ⟩ 1 A + ⟨ a ⟩ 0 A ⟨ b ⟩ 1 A + ⟨ a ⟩ 1 A ⟨ b ⟩ 0 A = a b c=\langle c\rangle^A_0+\langle c\rangle^A_1\\~~~=\langle a\rangle^A_0 \langle b\rangle^A_0+\langle a\rangle^A_1 \langle b\rangle^A_1+\langle a\rangle^A_0\langle b\rangle^A_1+\langle a\rangle^A_1\langle b\rangle^A_0\\~~~=ab c=c0A+c1A   =a0Ab0A+a1Ab1A+a0Ab1A+a1Ab0A   =ab
故成立。

如上采用的加密算法Enc是Pailler同态加密算法,其同态性如下:

  • 明文加法 <=> 密文乘法;
  • 明文乘法 <=> 密文指数幂

因此在上面流程的第3步中Dec(d)时才会将乘法转成加法,指数幂转成乘法。关于背后的原理参考我的另一篇博客:【密码学基础】半/全同态加密算法基础学习笔记

基于不经意传输(OT)的Beaver Triple生成
另一种常用的方式是基于COT(相关性不经意传输)的方式。
下面是计算交叉项 ⟨ a ⟩ 0 A ⟨ b ⟩ 1 A \langle a\rangle^A_0\langle b\rangle^A_1 a0Ab1A的流程:

  1. P 0 , P 1 P_0, P_1 P0,P1之间建立COT协议通信,其中 P 0 P_0 P0作为发送方, P 1 P_1 P1作为接收方;
  2. 在第 i i i轮的COT通信中:
    • P 1 P_1 P1输入 ⟨ b ⟩ 1 A [ i ] \langle b\rangle^A_1[i] b1A[i]作为自己的选择比特, P 0 P_0 P0输入相关性函数 f Δ i ( x ) = ( ⟨ a ⟩ 0 A ⋅ 2 i − x ) m o d 2 l f_{\Delta_i}(x)=(\langle a\rangle^A_0 \cdot 2^i - x)~\mathrm{mod}~2^l fΔi(x)=(⟨a0A2ix) mod 2l
    • P 0 P_0 P0获得消息对 ( s i , 0 , s i , 1 ) (s_{i, 0}, s_{i, 1}) (si,0,si,1),其中, s i , 0 ∈ R Z 2 l s_{i, 0}\in _R\mathbb{Z}_{2^l} si,0RZ2l s i , 1 = f Δ i ( s i , 0 ) = ( ⟨ a ⟩ 0 A ⋅ 2 i − s i , 0 ) m o d 2 l s_{i, 1}=f_{\Delta_i}(s_{i, 0})=(\langle a\rangle^A_0 \cdot 2^i - s_{i, 0})~\mathrm{mod}~2^l si,1=fΔi(si,0)=(⟨a0A2isi,0) mod 2l P 1 P_1 P1获得 s i , ⟨ b ⟩ 1 A [ i ] = ( ⟨ b ⟩ 1 A [ i ] ⋅ ⟨ a ⟩ 0 A ⋅ 2 i − s i , 0 ) m o d 2 l s_{i, \langle b\rangle^A_1[i]}=(\langle b\rangle^A_1[i]\cdot \langle a\rangle^A_0 \cdot 2^i - s_{i, 0})~\mathrm{mod}~2^l si,b1A[i]=(⟨b1A[i]a0A2isi,0) mod 2l
    • ⟨ u ⟩ 0 A = ( ∑ i = 0 l s i , 0 ) m o d 2 l \langle u\rangle^A_0=(\sum_{i=0}^ls_{i, 0})~\mathrm{mod}~2^l u0A=(i=0lsi,0) mod 2l, ⟨ u ⟩ 1 A = ( ∑ i = 0 l s i , ⟨ b ⟩ 1 A [ i ] ) m o d 2 l \langle u\rangle^A_1=(\sum_{i=0}^l s_{i, \langle b\rangle^A_1[i]})~\mathrm{mod}~2^l u1A=(i=0lsi,b1A[i]) mod 2l

证明:
⟨ a ⟩ 0 A ⟨ b ⟩ 1 A = ⟨ u ⟩ 0 A + ⟨ u ⟩ 1 A = ∑ i = 0 l s i , 0 + ∑ i = 0 l s i , ⟨ b ⟩ 1 A [ i ] = ∑ i = 0 l ( s i , 0 + ⟨ b ⟩ 1 A [ i ] ⋅ ⟨ a ⟩ 0 A ⋅ 2 i − s i , 0 ) = ∑ i = 0 l ( ⟨ b ⟩ 1 A [ i ] ⋅ ⟨ a ⟩ 0 A ⋅ 2 i ) \langle a\rangle^A_0 \langle b\rangle^A_1=\langle u\rangle^A_0+\langle u\rangle^A_1\\~~~~~~~~~~~~~~~~=\sum_{i=0}^ls_{i, 0}+\sum_{i=0}^l s_{i, \langle b\rangle^A_1[i]}\\~~~~~~~~~~~~~~~~=\sum_{i=0}^l(s_{i, 0}+\langle b\rangle^A_1[i]\cdot \langle a\rangle^A_0 \cdot 2^i - s_{i, 0})\\~~~~~~~~~~~~~~~~=\sum_{i=0}^l(\langle b\rangle^A_1[i]\cdot \langle a\rangle^A_0 \cdot 2^i) a0Ab1A=u0A+u1A                =i=0lsi,0+i=0lsi,b1A[i]                =i=0l(si,0+b1A[i]a0A2isi,0)                =i=0l(⟨b1A[i]a0A2i)
注:到这一步已经非常直观了,其实就是在二进制中做乘法,一个数的每一位去乘另一个数,然后移位(乘上对应位的2的幂次)累加(对每一位的乘法结果求和)。

举例:
假设 ⟨ a ⟩ 0 A = 3 , ⟨ b ⟩ 1 A = 5 = ( 101 ) 2 \langle a\rangle^A_0=3, \langle b\rangle^A_1=5=(101)_2 a0A=3,b1A=5=(101)2,于是:

⟨ a ⟩ 0 A ⟨ b ⟩ 1 A = ⟨ u ⟩ 0 A + ⟨ u ⟩ 1 A = ∑ i = 1 l ( s i , 0 + s i , ⟨ b ⟩ 1 A [ i ] ) = ∑ i = 1 l ( s i , 0 + ⟨ b ⟩ 1 A [ i ] ⋅ ⟨ a ⟩ 0 A ⋅ 2 i − s i , 0 ) = ∑ i = 1 l ( ⟨ b ⟩ 1 A [ i ] ⋅ ⟨ a ⟩ 0 A ⋅ 2 i ) = 1 ⋅ 3 ⋅ 2 0 + 0 ⋅ 3 ⋅ 2 1 + 1 ⋅ 3 ⋅ 2 2 = 3 + 0 + 12 = 15 \langle a\rangle^A_0 \langle b\rangle^A_1=\langle u\rangle^A_0+\langle u\rangle^A_1\\~~~~~~~~~~~~~~~~=\sum_{i=1}^l (s_{i, 0}+s_{i, \langle b\rangle^A_1[i]})\\~~~~~~~~~~~~~~~~=\sum_{i=1}^l (s_{i, 0}+\langle b\rangle^A_1[i]\cdot \langle a\rangle^A_0 \cdot 2^i - s_{i, 0})\\~~~~~~~~~~~~~~~~=\sum_{i=1}^l (\langle b\rangle^A_1[i]\cdot \langle a\rangle^A_0 \cdot 2^i)\\~~~~~~~~~~~~~~~~=1\cdot 3 \cdot 2^0+0 \cdot 3\cdot 2^1+1\cdot 3\cdot 2^2\\~~~~~~~~~~~~~~~~=3+0+12\\~~~~~~~~~~~~~~~~=15 a0Ab1A=u0A+u1A                =i=1l(si,0+si,b1A[i])                =i=1l(si,0+b1A[i]a0A2isi,0)                =i=1l(⟨b1A[i]a0A2i)                =1320+0321+1322                =3+0+12                =15
故计算正确。


http://www.ppmy.cn/news/1249239.html

相关文章

SparkSQL远程调试(IDEA)

启动Intellij IDEA&#xff0c;打开spark源码项目&#xff0c;配置远程调试 Run->Edit Configuration 启动远程spark-sql spark-sql --verbose --driver-java-options "-Xdebug -Xrunjdwp:transportdt_socket,servery,suspendy,address5005"运行远程调试&#xf…

Echarts的引入使用

ECharts文档 1.下载并引入Echarts 2.准备一个具备大小的DOM容器 3.初始化echarts实例对象 4.指定配置项和数据(option) 5.将配置项设置给echarts实例对象 最后是一个js文件 echarts的引入 1.引入echarts - js 文件 <script src"js/echarts.min.js"></scri…

el-tabel实现拖拽排序

1、使用npm安装sortableJs插件 npm install sortablejs --save2、在需要使用的页面进行引入 import Sortable from sortablejs3、表格拖拽排序完整代码 <template><div class"home"><el-table :data"tableData" style"width: 100%&…

什么是路由抖动?该如何控制

路由器在实现不间断的网络通信和连接方面发挥着重要作用&#xff0c;具有所需功能的持续可用的路由器可确保其相关子网的良好性能&#xff0c;由于网络严重依赖路由器的性能&#xff0c;因此确保您的路由器不会遇到任何问题非常重要。路由器遇到的一个严重的网络问题是路由抖动…

二分查找(折半查找)探究学习

1.引入 当我们想要查找在一个数组中某一个特定的数它的下标是什么的时候&#xff0c;我们最先想的方法是遍历数组&#xff0c;如下&#xff1a; #include<stdio.h> #include<string.h> int main() { int arr[10]{1,2,3,4,5,6,7,8,9,10}; int key 8;//要找的数是8…

Dockerfile讲解

Dockerfile 1. 构建过程解析2. Dockerfile常用保留字指令3. 案例3.1. 自定义镜像mycentosjava83.2. 虚悬镜像 4. Docker微服务实战 dockerfile是用来构建docker镜像的文本文件&#xff0c;是由一条条构建镜像所需的指令和参数构成的脚本。 dockerfile定义了进程需要的一切东西&…

计算机人机界面

人机界面是指入与机器之间相互交流和影响的区域。人机界面包括对数据和信息的输入和输出方法&#xff0c;以及人们对机器的操作和控制。早期&#xff0c;人机交互界面是控制合&#xff0c;随后通过键盘进行操作&#xff0c;目前为鼠标和键盘操作&#xff0c;而智能手机采用触摸…

C#学习 - 事件

事件&#xff08;Event&#xff09;简介 类型的成员&#xff0c;使对象或类具备通知能力的成员 对象A拥有一个事件B&#xff0c;当事件B发生时&#xff0c;对象A又能通知别人的能力&#xff0c;且会推送通知内容&#xff08;事件参数&#xff09; 根据通知和事件参数来采取行动…