文章目录
- 1. 引言
- 2. 二叉查找树
- 3. 实验内容
- 3.1 实验题目
- (一)输入要求
- (二)输出要求
- 3.2 算法实现
- 1. 数据结构
- 2. 全局变量
- 3. 中序遍历函数InOrder
- 4. 二叉查找树的构建函数T
- 5. 主函数
- 3.3 代码整合
- 4. 实验结果
1. 引言
二叉查找树(Binary Search Tree,BST)是一种常用的数据结构,它在计算机科学和信息处理中有着广泛的应用。BST的特点是对于树中的每个节点,其左子树的所有节点值小于当前节点的值,而右子树的所有节点值大于当前节点的值。
本实验将通过C语言构建一个二叉查找树,分析其性能计算平均查找长度。
2. 二叉查找树
二叉查找树(Binary Search Tree,BST)是一种二叉树,其中每个节点都包含一个键值(key)和对应的数据(value)。而且对于任意节点,其左子树中的所有节点的键值都小于该节点的键值,而右子树中的所有节点的键值都大于该节点的键值。
二叉查找树的这种特性使得在查找、插入和删除节点时具有高效性。通过比较目标键值和当前节点的键值,可以在树中快速定位到目标节点或确定插入、删除的位置。在平均情况下,这些操作的时间复杂度为O(log n),其中n是二叉查找树中节点的数量。
除了高效的查找操作,二叉查找树还支持有序性操作。通过中序遍历二叉查找树,可以按照键值的顺序输出树中的所有节点,从而实现对节点的有序访问。
需要注意的是,如果二叉查找树的节点插入和删除不平衡,即树的高度不均衡地增长,可能会导致查找、插入和删除操作的最坏情况时间复杂度为O(n),其中n是树中节点的数量。为了解决这个问题,可以使用自平衡的二叉查找树,如红黑树(Red-Black Tree)或AVL树,来保持树的平衡性。
3. 实验内容
3.1 实验题目
实现教材 287 页底部的算法 T,从无到有创建一棵二叉查找树,输出中根遍历序列,并编程计算查找成功时的平均查找长度。
(一)输入要求
char *A[30]={"THE","OF","AND","TO","A","IN","THAT","IS","WAS","HE","FOR","IT","WITH","AS","HIS","ON","BE","AT","BY","I","THIS","HAD","NOT","ARE","BUT","FROM","OR","HAVE","AN","THEY",};
(二)输出要求
- 输出该二叉查找树的中根遍历序列;
- 输出该二叉查找树查找成功时的平均查找长度。
3.2 算法实现
1. 数据结构
typedef struct P {char *key;struct P* llink;struct P* rlink;
} P;
2. 全局变量
P *root;
int Sum = 0;
3. 中序遍历函数InOrder
void InOrder(P *t)
{if(t==NULL) return;else{InOrder(t->llink);printf("%s\n",t->key);InOrder(t->rlink);}
}
- 递归地进行中序遍历,输出节点的关键词。
4. 二叉查找树的构建函数T
P* T(char *ch) {if (root == NULL) {root = (P*)malloc(sizeof(P));root->key = strdup(ch);root->llink = NULL;root->rlink = NULL;return NULL;}P* p = root;while (p != NULL) {Sum++;if (strcmp(ch, p->key) == 0)return p;if (strcmp(ch, p->key) < 0) {if (p->llink == NULL)break;elsep = p->llink;}else {if (p->rlink == NULL)break;elsep = p->rlink;}}P* q = (P*)malloc(sizeof(P));q->key = strdup(ch);q->llink = NULL;q->rlink = NULL;if (strcmp(ch, p->key) < 0)p->llink = q;elsep->rlink = q;return NULL;
}
- 若树为空,直接创建根节点。
- 若树不为空,根据二叉查找树的性质找到合适的位置插入新的节点。
5. 主函数
int main() {char *A[30]={"THE","OF","AND","TO","A","IN","THAT","IS","WAS","HE","FOR","IT","WITH","AS","HIS","ON","BE","AT","BY","I","THIS","HAD","NOT","ARE","BUT","FROM","OR","HAVE","AN","THEY",};int M = 30, i;for (i = 0; i < M; i++) {char *ch;ch = A[i];P* s = T(ch);}printf("中序遍历:\n");InOrder(root);Sum = 0;for (i = 0; i < M; i++) {char *ch;ch = A[i];P* s = T(ch);}printf("平均查找长度为%f", (float)Sum / M);// 释放节点的关键词内存for (i = 0; i < M; i++) {free(A[i]);}return 0;
}
- 利用关键词数组
A
构建二叉查找树。 - 输出中序遍历结果。
- 再次构建二叉查找树,计算平均查找长度,并输出。
3.3 代码整合
#include<stdio.h>
#include<string.h>
#include<malloc.h>typedef struct P {char *key;struct P* llink;struct P* rlink;
} P;P *root;
int Sum = 0;void InOrder(P *t) {if (t == NULL)return;else {InOrder(t->llink);printf("%s\n", t->key);InOrder(t->rlink);}
}P* T(char *ch) {if (root == NULL) {root = (P*)malloc(sizeof(P));root->key = strdup(ch);root->llink = NULL;root->rlink = NULL;return NULL;}P* p = root;while (p != NULL) {Sum++;if (strcmp(ch, p->key) == 0)return p;if (strcmp(ch, p->key) < 0) {if (p->llink == NULL)break;elsep = p->llink;}else {if (p->rlink == NULL)break;elsep = p->rlink;}}P* q = (P*)malloc(sizeof(P));q->key = strdup(ch);q->llink = NULL;q->rlink = NULL;if (strcmp(ch, p->key) < 0)p->llink = q;elsep->rlink = q;return NULL;
}int main() {char *A[30]={"THE","OF","AND","TO","A","IN","THAT","IS","WAS","HE","FOR","IT","WITH","AS","HIS","ON","BE","AT","BY","I","THIS","HAD","NOT","ARE","BUT","FROM","OR","HAVE","AN","THEY",};int M = 30, i;for (i = 0; i < M; i++) {char *ch;ch = A[i];P* s = T(ch);}printf("中序遍历:\n");InOrder(root);Sum = 0;for (i = 0; i < M; i++) {char *ch;ch = A[i];P* s = T(ch);}printf("平均查找长度为%f", (float)Sum / M);// 释放节点的关键词内存for (i = 0; i < M; i++) {free(A[i]);}return 0;
}
4. 实验结果
中序遍历:
A
AN
AND
ARE
AS
AT
BE
BUT
BY
FOR
FROM
HAD
HAVE
HE
HIS
I
IN
IS
IT
NOT
OF
ON
OR
THAT
THE
THEY
THIS
TO
WAS
WITH
平均查找长度为5.433333