LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字

news/2024/11/24 20:27:03/

上一节实现了 LangChain 实现给动物取名字,
实际上每次给不同的动物取名字,还得修改源代码,这周就用模块化template来实现。

1. 添加promptTemplate

from langchain.llms import OpenAI  # 导入Langchain库中的OpenAI模块
from langchain.prompts import PromptTemplate  # 导入Langchain库中的PromptTemplate模块
from langchain.chains import LLMChain  # 导入Langchain库中的LLMChain模块
from dotenv import load_dotenv  # 导入dotenv库,用于加载环境变量load_dotenv()  # 加载.env文件中的环境变量def generate_pet_name(animal_type):llm = OpenAI(temperature=0.7)  # 创建OpenAI模型的实例,设置temperature参数为0.7以调整生成的多样性# 创建PromptTemplate实例,用于构造输入提示prompt_template_name = PromptTemplate(input_variables=['animal_type'],template="I have a {animal_type} pet and I want a cool name for it. Suggest me five cool names for my pet.")name_chain = LLMChain(llm=llm, prompt=prompt_template_name)  # 创建LLMChain实例,将OpenAI模型和PromptTemplate传入response = name_chain({'animal_type': animal_type})  # 使用LLMChain生成宠物名字return response  # 返回生成的名字# 当该脚本作为主程序运行时,执行以下代码
if __name__ == "__main__":print(generate_pet_name('cat'))  # 调用generate_pet_name函数,并打印返回的结果

运行和输出

$ python main.py
{'animal_type': 'cat', 'text': '\n\n1. Shadow \n2. Midnight \n3. Storm \n4. Luna \n5. Tiger'}
(.venv) zgpeace on zgpeaces-MBP in ~/Workspace/LLM/langchain-llm-app(1m|feature/prompt)
$ python main.py
{'animal_type': 'cow', 'text': '\n\n1. Milky\n2. Mooly\n3. Bessie\n4. Daisy\n5. Buttercup'}
(.venv) zgpeace on zgpeaces-MBP in ~/Workspace/LLM/langchain-llm-app(4m|feature/prompt*)

在这里插入图片描述

2. 添加新的参数pte_color

from langchain.llms import OpenAI  # 导入Langchain库中的OpenAI模块
from langchain.prompts import PromptTemplate  # 导入Langchain库中的PromptTemplate模块
from langchain.chains import LLMChain  # 导入Langchain库中的LLMChain模块
from dotenv import load_dotenv  # 导入dotenv库,用于加载环境变量load_dotenv()  # 加载.env文件中的环境变量def generate_pet_name(animal_type, pet_color):llm = OpenAI(temperature=0.7)  # 创建OpenAI模型的实例,设置temperature参数为0.7以调整生成的多样性# 创建PromptTemplate实例,用于构造输入提示prompt_template_name = PromptTemplate(input_variables=['animal_type', 'pet_color'],template="I have a {animal_type} pet and I want a cool name for it. Suggest me five cool names for my pet.")name_chain = LLMChain(llm=llm, prompt=prompt_template_name)  # 创建LLMChain实例,将OpenAI模型和PromptTemplate传入response = name_chain({'animal_type': animal_type, 'pet_color': pet_color})  # 使用LLMChain生成宠物名字return response  # 返回生成的名字# 当该脚本作为主程序运行时,执行以下代码
if __name__ == "__main__":print(generate_pet_name('cow', 'black'))  # 调用generate_pet_name函数,并打印返回的结果

运行结果

$ python main.py
{'animal_type': 'cow', 'pet_color': 'black', 'text': '\n\n1. Daisy\n2. Maverick\n3. Barnaby\n4. Bessie\n5. Bossy'}
(.venv) zgpeace on zgpeaces-MBP in ~/Workspace/LLM/langchain-llm-app(6m|feature/prompt*)

3. 重构代码

把逻辑放到langchain_helper.py, 清空main.py代码

4. 用Streamlit 生成网页

main.py 代码实现

import langchain_helper as lch
import streamlit as stst.title("Pets name generator")

add path environment in .zshrc

export PATH="/Library/Frameworks/Python.framework/Versions/3.10/bin:$PATH"source .zshrc
zgpeaces-MBP at ~/Workspace/LLM/langchain-llm-app ±(feature/prompt) ✗ ❯ streamlit run main.py       👋 Welcome to Streamlit!If you’d like to receive helpful onboarding emails, news, offers, promotions,and the occasional swag, please enter your email address below. Otherwise,leave this field blank.Email:  You can find our privacy policy at https://streamlit.io/privacy-policySummary:- This open source library collects usage statistics.- We cannot see and do not store information contained inside Streamlit apps,such as text, charts, images, etc.- Telemetry data is stored in servers in the United States.- If you'd like to opt out, add the following to ~/.streamlit/config.toml,creating that file if necessary:[browser]gatherUsageStats = falseYou can now view your Streamlit app in your browser.Local URL: http://localhost:8501Network URL: http://192.168.50.10:8501For better performance, install the Watchdog module:$ xcode-select --install$ pip install watchdog

http://localhost:8501/
在这里插入图片描述

5. Streamlit 生成网页输入跟Langchain互动获取名字

main.py

import langchain_helper as lch  # 导入名为langchain_helper的模块,并使用别名lch
import streamlit as st  # 导入Streamlit库,并使用别名stst.title("Pets name generator")  # 在Streamlit应用中设置标题# 通过侧边栏选择宠物类型
animal_type = st.sidebar.selectbox("Select animal type", ["dog", "cat", "cow", "horse", "pig", "sheep"])# 根据宠物类型设置宠物颜色,使用侧边栏的文本区域输入
if animal_type in ['dog', 'cat', 'cow', 'horse', 'pig', 'sheep']:pet_color = st.sidebar.text_area(label=f"What color is your {animal_type}?", max_chars=15)
else:pet_color = st.sidebar.text_area(label="What color is your pet?", max_chars=15)# 如果有输入颜色,调用generate_pet_name函数生成宠物名字并显示
if pet_color:response = lch.generate_pet_name(animal_type, pet_color)st.text(response['pet_name'])

langchain_hepler.py 实现

from langchain.llms import OpenAI  # 导入Langchain库中的OpenAI模块
from langchain.prompts import PromptTemplate  # 导入Langchain库中的PromptTemplate模块
from langchain.chains import LLMChain  # 导入Langchain库中的LLMChain模块
from dotenv import load_dotenv  # 导入dotenv库,用于加载环境变量load_dotenv()  # 加载.env文件中的环境变量def generate_pet_name(animal_type, pet_color):llm = OpenAI(temperature=0.7)  # 创建OpenAI模型的实例,设置temperature参数为0.7以调整生成的多样性# 创建PromptTemplate实例,用于构造输入提示prompt_template_name = PromptTemplate(input_variables=['animal_type', 'pet_color'],template="I have a {animal_type} pet and I want a cool name for it. Suggest me five cool names for my pet.")name_chain = LLMChain(llm=llm, prompt=prompt_template_name, output_key='pet_name')  # 创建LLMChain实例,将OpenAI模型和PromptTemplate传入response = name_chain({'animal_type': animal_type, 'pet_color': pet_color})  # 使用LLMChain生成宠物名字return response  # 返回生成的名字# 当该脚本作为主程序运行时,执行以下代码
if __name__ == "__main__":print(generate_pet_name('cow', 'black'))  # 调用generate_pet_name函数,并打印返回的结果

在这里插入图片描述

参考

  • https://github.com/zgpeace/pets-name-langchain/tree/feature/prompt
  • https://youtu.be/lG7Uxts9SXs?si=H1CISGkoYiKRSF5V
  • Streamlit - https://streamlit.io

http://www.ppmy.cn/news/1227970.html

相关文章

vue.js javascript js判断是值否为空

检查一个对象(Object)是否为空,即不包含任何元素。Javascript 中的对象就是一个字典,其中包含了一系列的键值对(Key Value Pair)。检查一个对象是否为空,等价于检查对象中有没有键值对。 1、如…

Ubuntu 18.04/20.04 LTS安装 perf top 工具

1、sudo apt update -y 2、sudo apt install linux-tools-common linux-tools-generic -y 3、sudo modprobe perf 4、perf top 不能运行缺少内核环境,就执行命令L: find / -name "perf" 把所有列出来的 perf 都尝试执行下,那个可以执行…

C语言链表

head.h typedef struct Node_s{int data; //数据域struct Node_s *pNext; //指针域 } Node_t, *pNode_t;void headInsert(pNode_t *ppHead, pNode_t *ppTail, int data); void print(pNode_t pHead); void tailInsert(pNode_t *ppHead, pNode_t *ppTail, int data); void sort…

掌握深度学习利器——TensorFlow 2.x实战应用与进阶

掌握深度学习利器——TensorFlow 2.x实战应用与进阶 摘要:随着人工智能技术的飞速发展,深度学习已成为当下最热门的领域之一。作为深度学习领域的重要工具,TensorFlow 2.x 备受关注。本文将通过介绍TensorFlow 2.x的基本概念和特性&#xff…

坐标系下的运动旋量转换

坐标系下的运动旋量转换 文章目录 坐标系下的运动旋量转换前言一、运动旋量物体运动旋量空间运动旋量 二、伴随变换矩阵三、坐标系下运动旋量的转换四、力旋量五、总结参考资料 前言 对于刚体而言,其角速度可以写为 ω ^ θ ˙ \hat {\omega} \dot \theta ω^θ˙&…

Vue中的watch的使用

先看下Vue运行机制图 那么我们思考一件事,vue是通过watcher监听数据的变化然后给发布-订阅,这样实现了dom的渲染,那么我们思考一件事,我们往往需要知道一个数据的变化然后给页面相应的渲染,那么我们工作中在组件中的数…

PMCW体制雷达系列文章(4) – PMCW雷达之抗干扰

说明 本文作为PMCW体制雷达系列文章之一,主要聊聊FMCW&PMCW两种体制雷达的干扰问题。事实上不管是通信领域还是雷达领域,对于一切以电磁波作为媒介的信息传递活动,干扰是无处不在的。近年来,随着雷达装车率的提高,…

【Go入门】 Go如何使得Web工作

【Go入门】 Go如何使得Web工作 前面小节介绍了如何通过Go搭建一个Web服务,我们可以看到简单应用一个net/http包就方便的搭建起来了。那么Go在底层到底是怎么做的呢?万变不离其宗,Go的Web服务工作也离不开我们第一小节介绍的Web工作方式。 w…