坐标系下的运动旋量转换

news/2024/11/24 20:25:52/

坐标系下的运动旋量转换


文章目录

  • 坐标系下的运动旋量转换
  • 前言
  • 一、运动旋量
    • 物体运动旋量
    • 空间运动旋量
  • 二、伴随变换矩阵
  • 三、坐标系下运动旋量的转换
  • 四、力旋量
  • 五、总结
  • 参考资料


前言

对于刚体而言,其角速度可以写为 ω ^ θ ˙ \hat {\omega} \dot \theta ω^θ˙,其中, ω ^ \hat\omega ω^为单位转轴, θ ˙ \dot \theta θ˙为绕着转轴转动的角速度大小。运动旋量则用来描述物体角速度与线速度的组合。由于在机器人学中,运动旋量可能需要描述在不同坐标系之下,本文参考凯文·M.林奇的《现代机器人学》,对运动旋量概念坐标系下的运动旋量转换进行梳理与总结,便于自己后续回忆。


一、运动旋量

首先,定义有单位螺旋轴 S = ( ω , v x , v y , v z ) ( ω = 1 ) S=(\omega,v_x,v_y,v_z)(\omega=1) S=(ω,vx,vy,vz)ω=1,利用旋转速度 θ ˙ \dot\theta θ˙与之相乘,由此可得运动旋量 V = S θ ˙ V=S\dot\theta V=Sθ˙。这里注意:通过绕螺旋轴 S S S转动 θ \theta θ角的位移与以速度 θ ˙ = θ \dot\theta=\theta θ˙=θ绕螺旋轴 S S S转动单位时间完全相等,因此, V = S θ ˙ V=S\dot\theta V=Sθ˙可同样看作为指数坐标(刚体转动的指数坐标,可以等效为单位转轴 ω ^ ( ω ^ ∈ R 3 , ∣ ∣ ω ^ ∣ ∣ = 1 ) \hat\omega(\hat\omega\in R^3,||\hat\omega||=1) ω^(ω^R3,∣∣ω^∣∣=1))与绕该轴线的转角 θ ∈ R \theta\in R θR
在这里插入图片描述

在对运动旋量有了大致了解以后,正式进入正题,即何为物体运动旋量、何为空间运动旋量。

物体运动旋量

首先,用 { s } \{s\} {s} { b } \{b\} {b}分别描述固定(空间)坐标系和移动(物体)坐标系。则有
T s b ( t ) = [ R ( t ) p ( t ) 0 1 ] T_{sb}(t)=\begin{bmatrix} R(t) & p(t) \\ \pmb0 & 1 \end{bmatrix} Tsb(t)=[R(t)0p(t)1]
其中, T s b T_{sb} Tsb表示从空间坐标系到物体坐标系的转换集合矩阵,后续可用 T T T代替。令 T − 1 T ˙ T^{-1}\dot T T1T˙,则有
T − 1 T ˙ = [ R T − R T p 0 1 ] [ R ˙ p ˙ 0 0 ] = [ R T R ˙ R T p ˙ 0 1 ] T^{-1}\dot T=\begin{bmatrix} R^T & -R^Tp \\ \pmb0 & 1 \end{bmatrix}\begin{bmatrix} \dot R & \dot p \\ \pmb0 & 0 \end{bmatrix}=\begin{bmatrix} R^T\dot R & R^T\dot p \\ \pmb0 & 1 \end{bmatrix} T1T˙=[RT0RTp1][R˙0p˙0]=[RTR˙0RTp˙1]
其中, R T R ˙ = R − 1 R ˙ = [ ω b ] R^T\dot R=R^{-1}\dot R=[\omega_b] RTR˙=R1R˙=[ωb],这里的 [ ω b ] [\omega_b] [ωb]即为物体坐标系 { b } \{b\} {b}下的刚体角速度的反对称矩阵, [ ∗ ] [*] []符号代表 ∗ * 的反对称矩阵。具体证明过程可参考书籍,这里不再展开。同理, p ˙ \dot p p˙代表坐标系 { s } \{s\} {s}中描述的 { b } \{b\} {b}的原点的线速度,因此, R T p ˙ = R − 1 p ˙ = v b R^T\dot p=R^{-1}\dot p=v_b RTp˙=R1p˙=vb则为在物体坐标系 { b } \{b\} {b}中描述 { s } \{s\} {s}的原点的线速度。可进一步阐述为: T − 1 T ˙ T^{-1}\dot T T1T˙表示动坐标系相对于当前与其瞬时重合的静坐标系 { b } \{b\} {b}的线速度与角速度。
构造六维向量 V b = [ ω b v b ] V_b=\begin{bmatrix} \omega_b \\ v_b \end{bmatrix} Vb=[ωbvb],定义其为物体坐标系中的速度,简称为物体运动旋量。写为矩阵形式为
T − 1 T ˙ = [ V b ] = [ [ ω b ] v b 0 1 ] ∈ s e ( 3 ) T^{-1}\dot T=[V_b]=\begin{bmatrix} [\omega_b] & v_b \\ \pmb0 & 1 \end{bmatrix} \in se(3) T1T˙=[Vb]=[[ωb]0vb1]se(3)
这里可以注意,六维向量 V b V_b Vb的反对称矩阵的撰写形式,即原部矢量 w b w_b wb取反对称形式,偶部矢量不改变形式

空间运动旋量

同理,可以推导 T ˙ T − 1 \dot TT^{-1} T˙T1
V s = [ ω s v s ] ∈ R 6 , T ˙ T − 1 = [ V s ] = [ [ w s ] v s 0 1 ] ∈ s e ( 3 ) V_s=\begin{bmatrix} \omega_s \\ v_s \end{bmatrix} \in R^6, \dot TT^{-1}=[V_s]=\begin{bmatrix} [w_s] & v_s \\ \pmb0 & 1 \end{bmatrix} \in se(3) Vs=[ωsvs]R6,T˙T1=[Vs]=[[ws]0vs1]se(3)
此时, V s V_s Vs描述空间固定坐标系中的速度,因此被称为空间运动旋量。

二、伴随变换矩阵

在第一节中,描绘了分别在两个坐标系下的运动旋量,即 V b V_b Vb V s V_s Vs,那么,如果我们已知这两个坐标系的转换矩阵 T s b = ( R s b , p s b ) ∈ S E ( 3 ) T_{sb}=(R_{sb},p_{sb})\in SE(3) Tsb=(Rsb,psb)SE(3),我们是否可以对这两个运动旋量建立联系呢?答案就是伴随变换矩阵。即有
V s = [ ω s v s ] = [ A d T s b ] V b = [ R s b 0 [ p s b ] R s b R s b ] [ ω b v b ] V_s=\begin{bmatrix} \omega_s \\ v_s \end{bmatrix}=[Ad_{T_{sb}}]V_b=\begin{bmatrix} R_{sb} & \pmb 0\\ [p_{sb}]R_{sb} & R_{sb} \end{bmatrix} \begin{bmatrix} \omega_b \\ v_b \end{bmatrix} Vs=[ωsvs]=[AdTsb]Vb=[Rsb[psb]Rsb0Rsb][ωbvb]
其中, [ A d T s b ] = [ R s b 0 [ p s b ] R s b R s b ] ∈ R 6 × 6 [Ad_{T_{sb}}]=\begin{bmatrix} R_{sb} & \pmb 0\\ [p_{sb}]R_{sb} & R_{sb} \end{bmatrix} \in R^{6\times6} [AdTsb]=[Rsb[psb]Rsb0Rsb]R6×6即为该伴随变换矩阵。
将其化为矩阵形式,则有
[ V s ] = T s b [ V b ] T − 1 [V_s]=T_{sb}[V_b]T^{-1} [Vs]=Tsb[Vb]T1

三、坐标系下运动旋量的转换

结合第二、三节内容,即可总结空间、物体坐标系下运动旋量的转换关系: T s b ( t ) = T ( t ) = [ R ( t ) p ( t ) 0 1 ] ∈ S E ( 3 ) T_{sb}(t)=T(t)=\begin{bmatrix} R(t) & p(t)\\ \pmb0 & 1 \end{bmatrix}\in SE(3) Tsb(t)=T(t)=[R(t)0p(t)1]SE(3)仍表示固定坐标系 { s } \{s\} {s}到物体坐标系 { b } \{b\} {b}的位姿转换矩阵(这里的 S E ( 3 ) SE(3) SE(3)即为一种特殊李群)。则有
物体运动旋量(body twist)
T − 1 T ˙ = [ V b ] = [ [ ω b ] v b 0 1 ] ∈ s e ( 3 ) T^{-1}\dot T=[V_b]=\begin{bmatrix} [\omega_b] & v_b \\ \pmb0 & 1 \end{bmatrix} \in se(3) T1T˙=[Vb]=[[ωb]0vb1]se(3)
空间运动旋量(spatial twist)
T ˙ T − 1 = [ V s ] = [ [ ω s ] v s 0 1 ] ∈ s e ( 3 ) \dot TT^{-1}=[V_s]=\begin{bmatrix} [\omega_s] & v_s \\ \pmb0 & 1 \end{bmatrix} \in se(3) T˙T1=[Vs]=[[ωs]0vs1]se(3)
运动旋量 V b V_b Vb V s V_s Vs存在关系为
V s = [ ω s v s ] = [ R s b 0 [ p s b ] R s b R s b ] [ ω b v b ] = [ A d T s b ] V b V_s=\begin{bmatrix} \omega_s \\ v_s \end{bmatrix}=\begin{bmatrix} R_{sb} & \pmb 0\\ [p_{sb}]R_{sb} & R_{sb} \end{bmatrix} \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}=[Ad_{T_{sb}}]V_b Vs=[ωsvs]=[Rsb[psb]Rsb0Rsb][ωbvb]=[AdTsb]Vb
V b = [ ω b v b ] = [ R s b T 0 − R s b T [ p s b ] R s b T ] [ ω s v s ] = [ A d T s b ] V s V_b=\begin{bmatrix} \omega_b \\ v_b \end{bmatrix}=\begin{bmatrix} R_{sb}^T & \pmb 0\\ -R_{sb}^T[p_{sb}] & R_{sb}^T \end{bmatrix} \begin{bmatrix} \omega_s \\ v_s \end{bmatrix}=[Ad_{T_{sb}}]V_s Vb=[ωbvb]=[RsbTRsbT[psb]0RsbT][ωsvs]=[AdTsb]Vs
这里友情提示下,在《现代机器人学》第三次印刷本中,对于 V s V_s Vs V b V_b Vb的转换似乎存在小错误,不过问题不大,一般都能看出来,自行矫正即可。

四、力旋量

与运动旋量对应的,也存在着力旋量的定义。对作用于空间物体上的力矩 m a m_a ma f a f_a fa,同样可将其合成为六维的空间力的形式,其称为力旋量(wrench),在坐标系 { a } \{a\} {a}中可描述为
F a = [ m a f a ] ∈ R 6 F_a=\begin{bmatrix} m_a \\ f_a \end{bmatrix} \in R^6 Fa=[mafa]R6
如若作用于刚体的力旋量不唯一,即将其通过力旋量的六维形式直接相加即可。无力元素的力旋量则被称为纯力偶(pure moment)
关于力旋量的转换关系,基于系统功率一定原则,最终可推导出:
F b = [ A d T a b T ] F a F_b=[Ad_{T_{ab}}^T]F_a Fb=[AdTabT]Fa
其中, F a F_a Fa F b F_b Fb分别为坐标系 { a } \{a\} {a}与坐标系 { b } \{b\} {b}中的力旋量, T a b T_{ab} Tab为坐标系 { a } \{a\} {a}到坐标系 { b } \{b\} {b}的转换矩阵。

五、总结

在学习运动旋量与李群李代数时,一开始感觉确实有些晦涩且难以理解,但是在反复学习时,又感觉其形式简洁且非常实用,因此在这里学习记录,供后续参考。

参考资料

【1】https://www.bilibili.com/video/BV1KV411Z7sC/?p=17&vd_source=029a7426f7a6cecb96f1969e1ce8aff7。
【2】现代机器人学:机构、规划与控制。


http://www.ppmy.cn/news/1227965.html

相关文章

Vue中的watch的使用

先看下Vue运行机制图 那么我们思考一件事,vue是通过watcher监听数据的变化然后给发布-订阅,这样实现了dom的渲染,那么我们思考一件事,我们往往需要知道一个数据的变化然后给页面相应的渲染,那么我们工作中在组件中的数…

PMCW体制雷达系列文章(4) – PMCW雷达之抗干扰

说明 本文作为PMCW体制雷达系列文章之一,主要聊聊FMCW&PMCW两种体制雷达的干扰问题。事实上不管是通信领域还是雷达领域,对于一切以电磁波作为媒介的信息传递活动,干扰是无处不在的。近年来,随着雷达装车率的提高,…

【Go入门】 Go如何使得Web工作

【Go入门】 Go如何使得Web工作 前面小节介绍了如何通过Go搭建一个Web服务,我们可以看到简单应用一个net/http包就方便的搭建起来了。那么Go在底层到底是怎么做的呢?万变不离其宗,Go的Web服务工作也离不开我们第一小节介绍的Web工作方式。 w…

【Go入门】 Go搭建一个Web服务器

【Go入门】 Go搭建一个Web服务器 前面小节已经介绍了Web是基于http协议的一个服务,Go语言里面提供了一个完善的net/http包,通过http包可以很方便的搭建起来一个可以运行的Web服务。同时使用这个包能很简单地对Web的路由,静态文件&#xff0c…

Linux命令(125)之scp

linux命令之scp 1.scp介绍 linux命令scp用于在两个主机之间安全的复制文件和目录 2.scp用法 scp [参数] <source> <target> scp常用参数 参数说明-P指定远程主机的端口-p复制文件时&#xff0c;保留原始文件的属性(E [rootrhel77 ~]# scp 192.168.10.249.txt r…

Windows安装Vmware 虚拟机

目录 一、Vmware 虚拟机介绍 二、Vmware 虚拟机的三种网络模式 2.1桥接模式 2.2仅主机模式 2.3NAT 网络地址转换模式 三、Vmware 虚拟机的安装 一、Vmware 虚拟机介绍 VMware Workstation Pro 是一款可以在个人电脑的操作系统上创建一个完全与主机操作系统隔离的 虚拟机&…

【数据结构&C++】二叉平衡搜索树-AVL树(25)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.AVL树的概念二.AVL树节点的定义(代码…

WPF xaml Command用法介绍

WPF (Windows Presentation Foundation) 中的命令设计模式是一种用于分离用户界面逻辑和业务逻辑的方法。在WPF中&#xff0c;这种模式通过命令接口&#xff08;如 ICommand&#xff09;实现&#xff0c;使得用户界面组件&#xff08;如按钮、菜单项等&#xff09;可以触发不直…