【汇编】内存中字的存储、用DS和[address]实现字的传送、DS与数据段

news/2024/10/17 18:15:32/

文章目录

  • 前言
  • 一、内存中字的存储
    • 1.1 8086cpu字的概念
    • 1.2 16位的字存储在一个16位的寄存器中,如何存储?
    • 1.3 字单元
  • 二、用DS和[address]实现字的传送
    • 2.1 字的传送是什么意思?
    • 2.2 要求
      • 原理
      • 解决方案:DS和[address]配合
      • 8086传送16字节
    • 2.3 案例
      • 案例1
      • 案例2
  • 三、DS与数据段
    • 3.1 DS与数据段是什么?
    • 3.2 对内存单元中数据的访问
    • 3.3 将123B0H~123BAH的内存单元定义为数据段
      • 累加数据段中的前3个单元中的数据
      • 累加数据段中的前3个字型数据
  • 总结


前言

在汇编语言中,我们处理计算机内存中的数据时,需要理解如何存储和传送字(数据的一部分)。通过使用数据段寄存器 DS 和 [address] 这样的符号,我们能够有效地操作内存中的字,实现数据的传送和处理。


一、内存中字的存储

1.1 8086cpu字的概念

让我用通俗易懂的话给你介绍一下 8086 CPU 中的字的概念。

在计算机世界中,一个字通常表示一组二进制位,这个组合的长度是由计算机的架构决定的。在 8086 CPU 中,一个字由 16 位组成。每个位可以是 0 或 1,就像开关一样,有 16 个开关组合在一起,构成了一个字。

想象一下你有一串 16 个灯泡,每个灯泡可以是亮的(1)或者暗的(0)。这串灯泡就代表了一个字。当计算机处理数据时,它会以这样的字为单位进行操作。这些操作可以包括加法、减法、移动数据等等。

所以,8086 CPU 中的字就像是计算机处理信息的一种方式,就像我们平时用字来表达语言一样,计算机通过字来表达和处理数据。这个字的长度是 16 位,每位都有它的特定含义,就像字母构成单词一样,这些 16 位的二进制数构成了计算机世界中的“语言”基本单位。

1.2 16位的字存储在一个16位的寄存器中,如何存储?

1、回答
高8位放高字节,低8位放低字节
2、问题
16位的字在内存中需要2个连续字节存储,怎么存放?
3、回答
低位字节存在低地址单元,高位字节存在高地址单元
例:20000D(4E20H)存放0、1两个单元,18D
(0012H)存放在2、3两个单元

在这里插入图片描述

1.3 字单元

字单元:由两个地址连续的内存单元组成,存放一个字型数据(16位)

想象一下你有一个很长的故事,而你希望每次只读取一小段,而不是整篇文章。字单元就有点像这个故事中的一个小节,是计算机中用来处理数据的一小块单元。

在计算机的世界里,字单元是存储器中的一小部分,通常是由多个位(比如8位、16位、32位等)组成的。这些位就像是计算机的开关,可以表示不同的信息。

字单元可以存储一个数字、一个字符或者其他数据。它就像一个小盒子,可以装一些信息。当计算机需要处理数据时,它可以一次性处理一个字单元,就像你一次读一个小节的故事一样。

所以,字单元是计算机存储和处理信息的一种方式,是数据的一个小单元,让计算机更方便地管理和操作数据。

原理:在一个字单元中,低地址单元存放低位字节,高地址单元存放高位字节
在起始地址为0的单元中,存放的是4E20H
在起始地址为2的单元中,存放的是0012H
在这里插入图片描述

即是0、1可以组合:4E20H
1、2可以组合:124E
依次类推

二、用DS和[address]实现字的传送

2.1 字的传送是什么意思?

让我用通俗易懂的语言来解释一下汇编中的 DS 和 [address] 实现字的传送是什么意思。

首先,DS 是数据段寄存器的缩写,它在汇编语言中用来指示数据存储的位置。就像你有一个大抽屉,把不同类型的东西放在不同的抽屉里一样,DS 帮助计算机知道从哪里找到存储的数据。

然后,[address] 表示一个内存地址。你可以把内存地址看作是抽屉的编号,告诉计算机在哪里找到具体的数据。[address] 就像是对抽屉的引用,告诉计算机要去哪个抽屉找数据。

现在,当你在汇编语言中看到类似 MOV AX, [BX] 这样的指令时,它的意思是将 BX 寄存器中存储的地址所指向的数据(就像抽屉里的东西)传送到 AX 寄存器中。

总体来说,使用 DS 寄存器和 [address],汇编语言就像在抽屉中移动数据一样。DS 帮助找到正确的抽屉(数据段),而 [address] 则告诉计算机在这个抽屉中具体找哪个位置的数据。这样,就能够实现数据的传送和处理。

2.2 要求

CPU要读取一个内存单元的时候,必须先给出这个内存单元的地址;

原理

在8086PC中,内存地址由段地址和偏移地址组成(段地址:偏移地址)、

解决方案:DS和[address]配合

用 DS寄存器存放要访问的数据的段地址
偏移地址用[…]形式直接给出
例1

mov bx,1000H
mov ds,bx
mov al, [0]

将10000H(1000:0)
中的数据读到al中

例2

mov bx,1000H
mov ds,bx
mov [0],al

将al中的数据写到
10000H(1000:0)中

将段地址送入DS的两种方式
(1) mov ds, 1000H

(2)

mov bx, 1000H
mov ds, bx

例1

mov bx,1000H
mov ds,bx
mov al, [0]

8086CPU不支持将数据直接送入段寄存器
(硬件设计的问题)
套路:数据→一般的寄存器→段寄存器

8086传送16字节

8086CPU可以一次性传送一个字(16位的数据)

例如:

mov bx, 1000H
mov ds, bx
mov ax, [0] ;1000:0处的字型数据送入ax
mov [0], cx ;cx中的16位数据送到1000:0处

2.3 案例

案例1

mov ax, 1000H
mov ds, ax
mov ax, [0]
mov bx, [2]
mov cx, [1]
add bx, [1]
add cx, [2]

案例2

mov ax, 1000H
mov ds, ax
mov ax, 2C31
mov [0], ax
mov bx, [0]
sub bx, [2]
mov [2], bx

三、DS与数据段

3.1 DS与数据段是什么?

DS寄存器:

想象一下,你有一个大书柜,里面存放了很多不同的书籍。每一本书都有一个特定的位置,你需要知道在哪个部分找到它。DS 寄存器就好像是一张告诉你在书柜的哪个部分找书的地图。它指示计算机在内存中的哪个区域找到数据。

数据段:

现在,把这个书柜比作内存,而书柜的每个抽屉就是一个数据段。每个抽屉里存放着一些相关的信息,可能是一组数字、字符或其他数据。数据段就像是书柜的一个部分,用来组织和存储特定类型的数据。

因此,当我们说 DS 寄存器与数据段有关时,我们是在告诉计算机在内存中的哪个区域找到数据。就好比你要找一本书,首先要知道在哪个书柜的哪个抽屉里找,DS 寄存器就提供了这个信息,而数据段就是具体的书柜部分,其中存放着相关的数据。

在汇编语言中,通过设置 DS 寄存器,我们可以定位到正确的数据段,就像通过地图找到正确的书柜一样。这有助于我们在程序中有效地访问和处理数据。

3.2 对内存单元中数据的访问

对于8086PC机,可以根据需要将一组内存单元定义为一个段。
物理地址=段地址×16+偏移地址
将一组长度为N(N≤64K)、地址连续、起始地址为16的倍数的内存单元当作专门存储数
据的内存空间,从而定义了一个数据段。
例:用123B0H~123B9H的空间来存放数据
段地址:123BH 起始偏移地址:0000H 长度:10字节
段地址:1230H 起始偏移地址:00B0H 长度:10字节
… :处理方法:(DS)😦[address])
用DS存放数据段的段地址
用相关指令访问数据段中的具体单元,单元地址由[address]指出

3.3 将123B0H~123BAH的内存单元定义为数据段

累加数据段中的前3个单元中的数据

mov ax, 123BH
mov ds, ax
mov al, 0
add al, [0]
add al, [1]
add al, [2]

在这里插入图片描述

累加数据段中的前3个字型数据

mov ax, 123BH
mov ds, ax
mov ax, 0
add ax, [0]
add ax, [2]
add ax, [4]

在这里插入图片描述


总结

在汇编语言中,理解如何存储和传送字是关键的。通过使用 DS 寄存器和 [address],我们能够精确地定位内存中的数据,并在不同的数据段中操作。这就好比在巨大的书库中,通过标识书架和特定页面的方式找到并使用我们需要的信息。这些概念是理解计算机内存工作原理和编写有效汇编代码的基础。


http://www.ppmy.cn/news/1222795.html

相关文章

工业镜头的类别

工业镜头的类别 按照等效焦距分为: 广角镜头 中焦距镜头 长焦距镜头 广角镜头 等效焦距小于标准镜头(等效焦距为50mm)的镜头。特点是最小工作距离短,景深大,视角大。常常表现为桶形畸变。 中焦距镜头 焦距介于广角镜…

前端开发学习 (一) 搭建Vue基础环境

一、环境搭建 1、安装nodejs #下载地址 https://nodejs.org/dist/v20.9.0/node-v20.9.0-x64.msi 2、配置环境变量 上面下载完安装包后自行安装,安装完成后安装下图操作添加环境变量 #查看版本 node --version v20.9.0# npm --version 10.1.03、配置npm加速源 np…

Karmada更高效地实现故障转移

随着云原生技术的发展,其应用场景不断扩大。越来越多的企业开始将应用程序部署在 Kubernetes 集群中,随着 Kubernetes 集群规模的不断扩大,也带来了许多管理挑战,例如多集群间负载均衡、资源调度、故障转移等问题。为了解决这些问…

Element UI之Cascader 级联选择器

Cascader 级联选择器 当一个数据集合有清晰的层级结构时,可通过级联选择器逐级查看并选择。 按需引入方式 如果是完整引入可跳过此步骤 import Vue from vue import { Cascader } from element-ui import element-ui/lib/theme-chalk/base.css import element-u…

IgH Master环境搭建

目标:实时linux内核中运行IgH主站,ethercat的用户态工具能看到主站信息。 一、需要的软件 1,vbox虚拟机 https://www.virtualbox.org/,下载VirtualBox 7.0, 备注:windows中不要用wsl开发,wsl运行unbuntu…

温度、机械振动等对电子产品的影响

今天在《印制电路板设计技术》里看到下面一段话,感觉可以非常好的解释一个故障率很高的产品的问题。这个探头用在冷却塔里面,露天,温度很高,尤其是夏天的时候,会有热气直接吹在探头上面;里面的湿度还很高&a…

渗透测试--2.漏洞探测和利用

渗透测试--2.漏洞探测和利用 渗透测试--2.漏洞探测和利用一.漏洞分类二.漏洞探测三.漏洞利用四.漏洞扫描1.Nessuskali安装Nessus1、下载安装2、启动Nessus3、访问Nessus(亲测有效,重装初始化选择nessus essentials版,其他按步骤来就行了)4、获取插件包2.Web应用漏洞扫描器—…

QT自定义信号,信号emit,信号参数注册

qt如何自定义信号 使用signals声明返回值是void在需要发送信号的地方使用 emit 信号名字(参数)进行发送 在需要链接的地方使用connect进行链接 ct进行链接