【OpenCV实现图像:图像处理技巧之空间滤波】

news/2024/12/22 23:01:52/

文章目录

    • 概要
    • 导入库
    • 空间过滤器模板
    • 展示效果
    • 分析与总结

概要

空间滤波器是数字图像处理中的基本工具之一。它通过在图像的每个像素位置上应用一个特定的滤波模板,根据该位置周围的相邻像素值进行加权操作,从而修改该像素的值。这种加权操作能够突出或模糊图像的特定特征,实现多种图像处理任务。

在降噪任务中,空间滤波器可以平均化局部像素值,减少图像中的噪声,使图像看起来更清晰。在边缘检测中,滤波器可以强调图像中的边缘,使其更加显著,便于后续分析。而在图像平滑任务中,空间滤波器则可以平滑图像中的过渡区域,使图像看起来更加连续和自然。

通过在不同的图像处理场景中灵活应用空间滤波器,可以有效改善图像质量,满足各种视觉需求。这些滤波器的设计和选择是图像处理领域的重要课题,能够帮助人们更好地理解和分析图像信息。

导入库

为了进行图像处理,我们通常需要导入一些必要的库

import numpy as np
import matplotlib.pyplot as plt
from fractions import Fraction
from skimage.io import imread, imshow
from scipy.signal import convolve2d
from skimage.color import rgb2gray, gray2rgb

空间过滤器模板

空间滤波器模板是用于修改像素值的核心工具。在以下代码中,我们定义了五种常见的空间滤波器模板,分别是Horizontal Sobel Filter、Vertical Sobel Filter、Edge Detection、Sharpen和Box Blur。

def get_filters():# 定义滤波器模板kernel_hsf = np.array([[1, 2, 1],[0, 0, 0],[-1, -2, -1]])kernel_vsf = np.array([[1, 0, -1],[2, 0, -2],[1, 0, -1]])kernel_edge = np.array([[-1, -1, -1],[-1, 8, -1],[-1, -1, -1]])kernel_sharpen = np.array([[0, -1, 0],[-1, 5, -1],[0, -1, 0]])kernel_bblur = (1 / 9.0) * np.array([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]])kernels = {'Box Blur': kernel_bblur,'Sharpen': kernel_sharpen,'Horizontal Sobel Filter': kernel_hsf,'Vertical Sobel Filter': kernel_vsf,'Edge Detection': kernel_edge,}return kernels

展示效果

通过以上定义的滤波器模板,我们可以将它们应用于真实图像上,以获得不同的视觉效果。
display_filters('dorm_lobby.png') 换成自己的图片即可

def display_filters(image_path):# 读取图像image = imread(image_path)[:,:,:3]    kernels = get_filters()# 创建包含子图的图像窗口fig, ax = plt.subplots(2, 3, figsize=(20, 15))ax[0, 0].imshow(rgb2gray(image[:,:,:3]), cmap='gray')ax[0, 0].set_title('Original Image', fontsize=20)ax[0, 0].set_xticks([])ax[0, 0].set_yticks([])for i, (name, kernel) in enumerate(kernels.items(), 1):row = i // 3col = i % 3ax[row, col].imshow(kernel, cmap='gray')ax[row, col].set_title(name, fontsize=30)for (j, k), val in np.ndenumerate(kernel):if val < 1:ax[row, col].text(k, j, str(Fraction(val).limit_denominator()), ha='center', va='center', color='red', fontsize=30)else:ax[row, col].text(k, j, str(val), ha='center', va='center', color='red', fontsize=30)plt.tight_layout()plt.show()# 展示滤波器效果
display_filters('dorm_lobby.png')

结果:
在这里插入图片描述
述代码中,通过函数get_filters(),我们定义了五种常见的空间滤波器模板,分别为Horizontal Sobel Filter, Vertical Sobel Filter, Edge Detection, Sharpen以及 Box Blur 。接着我们可以将这些滤波器应用于真实图像。

import numpy as np
import matplotlib.pyplot as plt
from fractions import Fraction
from skimage.io import imread, imshow# For Spatial Filters
from scipy.signal import convolve2d
from skimage.color import rgb2gray, gray2rgb
def get_filters():# Define Filters# Horizontal Sobel Filterkernel_hsf = np.array([[1, 2, 1],[0, 0, 0],[-1, -2, -1]])# Vertical Sobel Filterkernel_vsf = np.array([[1, 0, -1],[2, 0, -2],[1, 0, -1]])# Edge Detectionkernel_edge = np.array([[-1, -1, -1],[-1, 8, -1],[-1, -1, -1]])# Sharpenkernel_sharpen = np.array([[0, -1, 0],[-1, 5, -1],[0, -1, 0]])# Box Blurkernel_bblur = (1 / 9.0) * np.array([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]])# Define the kernelskernels = {'Box Blur': kernel_bblur,'Sharpen': kernel_sharpen,'Horizontal Sobel Filter': kernel_hsf,'Vertical Sobel Filter': kernel_vsf,'Edge Detection': kernel_edge,}return kernelsdef display_filters(image_path):# Read the imageimage = imread(image_path)[:, :, :3]kernels = get_filters()# Create a figure with subplots for each kernelfig, ax = plt.subplots(2, 3, figsize=(20, 15))ax[0, 0].imshow(rgb2gray(image[:, :, :3]), cmap='gray')ax[0, 0].set_title('Original Image', fontsize=20)ax[0, 0].set_xticks([])ax[0, 0].set_yticks([])# Loop over the keys and values in the kernels dictionaryfor i, (name, kernel) in enumerate(kernels.items(), 1):# Determine the subplot indexrow = i // 3col = i % 3# Plot the kernel on the appropriate subplotax[row, col].imshow(kernel, cmap='gray')ax[row, col].set_title(name, fontsize=30)# Loop over the cells in the kernelfor (j, k), val in np.ndenumerate(kernel):if val < 1:ax[row, col].text(k, j,str(Fraction(val).limit_denominator()),ha='center', va='center',color='red', fontsize=30)else:ax[row, col].text(k, j, str(val),ha='center', va='center',color='red', fontsize=30)# Show the plotplt.tight_layout()plt.show()def apply_selected_kernels(image_path, selected_kernels, plot_cols=3):# Define the kernelskernels = get_filters()# Check if the selected kernels are defined, if not raise an exceptionfor k in selected_kernels:if k not in kernels:raise ValueError(f"Kernel '{k}' not defined.")# Read the imageimage = imread(image_path)[:, :, :3]# Apply selected kernels to each color channel of the imageconv_rgb_images = {}for kernel_name in selected_kernels:kernel = kernels[kernel_name]transformed_channels = []for i in range(3):conv_image = convolve2d(image[:, :, i], kernel, 'valid')transformed_channels.append(abs(conv_image))conv_rgb_image = np.dstack(transformed_channels)conv_rgb_image = np.clip(conv_rgb_image, 0, 255).astype(np.uint8)conv_rgb_images[kernel_name] = conv_rgb_image# Display the original and convolved imagesfig, axs = plt.subplots(len(selected_kernels) + 1, plot_cols, figsize=(15, 10))axs[0, 0].imshow(image)axs[0, 0].set_title('Original Image')axs[0, 0].axis('off')for i, kernel_name in enumerate(selected_kernels, 1):axs[i, 0].imshow(conv_rgb_images[kernel_name])axs[i, 0].set_title(kernel_name)axs[i, 0].axis('off')# Hide remaining empty subplots, if anyfor i in range(len(selected_kernels) + 1, len(axs.flat)):axs.flatten()[i].axis('off')plt.tight_layout()plt.show()# 调用display_filters()函数来获取滤波器矩阵
# display_filters('dorm_lobby.png')# 调用apply_selected_kernels()函数,传入图像路径和希望应用的滤波器名称列表
apply_selected_kernels('dorm_lobby.png',['Edge Detection','Horizontal Sobel Filter','Vertical Sobel Filter'])

结果:
在这里插入图片描述
当然,我们可以通过以下代码查看其他几种模板的对应效果,代码如下:

# Visualize Edge Detection, Sharpen, and Box Blur
apply_selected_kernels('dog.png', ['Edge Detection','Sharpen', 'Box Blur'], plot_cols=2)

分析与总结

在图像处理中,空间滤波器的作用非常强大。不同的滤波器模板可以用于实现各种图像处理任务,例如边缘检测、图像锐化和模糊等。通过深入了解每种滤波器的特点和应用场景,我们可以更好地运用它们,释放创造力,探索图像处理的无限可能性。通过本文的介绍,希望读者对空间滤波器有了更加清晰的认识,能够在实际应用中灵活运用这些知识,创造出更加引人注目的图像效果。


http://www.ppmy.cn/news/1204805.html

相关文章

RS练习 - PTE(一)

目录 RS 题目练习 请问大学中的研究员到底处于一个什么样的地位&#xff0c;它的晋升通道是什么样的&#xff1f; 介绍一下莎翁笔下的塞壬 介绍一下绘画当中的至上主义派 介绍一下黑格尔的主仆辩证法 介绍一下巴塔耶的“经济学的终结” 介绍一下愿望驱动的力比多经济&am…

Android 使用.9图 NinePatchDrawable实现动态聊天气泡

最近一段时间&#xff0c;在做一个需求&#xff0c;需要实现一个聊天气泡的动画效果&#xff0c;如下图所示&#xff1a; GitHub源码demo &#xff0c;建议下载demo&#xff0c;运行查看。 动态聊天气泡动画 静态聊天气泡 经过一段时间调研&#xff0c;实现方案如下: 实现方…

鸿蒙开发工具DevEco Studio的下载和安装

一、DevEco Studio概述 1、简介 HUAWEI DevEco Studio&#xff08;获取工具请单击链接下载&#xff0c;以下简称DevEco Studio&#xff09;是基于IntelliJ IDEA Community开源版本打造&#xff0c;为运行在HarmonyOS和OpenHarmony系统上的应用和服务&#xff08;以下简称应用…

统计学习笔记 第 5 部分:破碎系数

照片由 Unsplash上的 资源数据库提供 1&#xff1a;背景与动机 正如本系列之前的文章所述&#xff0c;统计学习理论为理解机器学习推理问题提供了一个概率框架。用数学术语来说&#xff0c;统计学习理论的基本目标可以表述为&#xff1a; 图片由作者提供 本文是统计学习理论系…

java的反应式流

Java的反应式流是一种新的编程模型&#xff0c;它在异步和事件驱动的环境下工作。反应式流的目的是为了解决传统的单线程或者多线程编程模型在高并发和大流量情况下的性能瓶颈。 反应式流的核心是Observable和Observer&#xff0c;Observable表示一个数据流&#xff0c;而Obse…

java后端debug排查问题思路

问题排查思路 这里说的是主要是debug以及线上问题排查的思路. 解决问题的步骤 确认环境、确定问题、复现问题、查看日志、定位问题 、解决问题 确认环境/url/参数 确认是哪个环境。 是开发环境&#xff0c;测试环境&#xff0c;还是生产环境。 如果问题是在测试环境&…

工业CT 三维重建 及分割

目录 工业CT介绍 工业CT主要应用于以下领域&#xff1a; CT三维重建软件&#xff1a; 效果&#xff1a; 工业CT介绍 工业CT设备是基于线阵探测器的断层扫描技术&#xff0c;是一种常用的无损检测技术&#xff0c;用于获取物体内部的准确三维结构信息。它通过X射线的投射和接…

希尔排序原理

目录&#xff1a; 一、希尔排序与插入排序 1&#xff09;希尔排序的概念 2&#xff09;插入排序实现 二、希尔排序实现 一、希尔排序与插入排序 1&#xff09;希尔排序的概念 希尔排序(Shells Sort)是插入排序的一种又称“缩小增量排序”&#xff08;Diminishing Incremen…