如何用 GPT-4 全模式(All Tools)帮你高效学习和工作?

news/2024/11/19 8:30:57/

「十项全能」的 ChatGPT ,用起来感受如何?

e2c37c65eafd60aa23388aacb4d85509.jpeg

之前,作为 ChatGPT Plus 用户,如果你集齐下面这五个模式,就会成为别人羡慕的对象。

081e994a98dcf722941c7582fa738658.jpeg

但现在,人们更加期盼的,是下面这个提示的出现:

30295b1b5df71bc42127eef6149f1bbb.jpeg

这个提示,意味着你的 GPT-4 已经不再是「一专」(只能使用某一模式),而是「多能」(根据需要自动调用不同模式的功能)。

例如你可以让 ChatGPT 看到一幅图(原本的基础模式),然后让它自动理解总结图片的内容,并且要求它绘制出类似的图片(原本的 DALLE)模式。当然,你还可以让它自动编程(原本的 Advanced Data Analysis 模式)或者访问网络(原本的 Browse with Bing 或者插件模式)。

这样一来,用户的想象力就可以变成特别有趣有用的实践过程。例如王佩老师,就让 ChatGPT 绘制简笔画。他对绘制结果很满意。

c64071c3f0d3198dd6b68fd136643761.jpeg

见贤思齐,于是我又把自己的微信头像传上去了。要求 ChatGPT (GPT-4 All Tools):

画成皮克斯风格

b42326eb36d3a997fac9353cc75373d1.jpeg

于是,我获得了这样的图像:

103f4f315f20fd5387426629a7eb3306.jpeg

呃,除了人物不像我,以及背景多了一只狐狸,我没有啥可抱怨的……

同时生成的,还有另外一幅作品。咱们也放大看看。

cfb3528beecc03a686f917f7cdcc42a3.jpeg

可这…… 也太不像我了啊。于是,我提出了这样的要求:

画成皮克斯风格,注意人物一定要像。

bd2d058f65bd17cb2401fcd58c94af05.jpeg

这次 GPT-4 全模式 (All Tools) 的绘图结果是这样的:

c67bc658b0179a2498b48a78964be5da.jpeg

这个…… 你要非得说像我,我无话可说。

我查看了对应的提示词:

Photo of a cheerful man outdoors, wearing a light blue polo shirt and a backpack. He is Asian, with short black hair, smiling warmly with a backdrop of mountains covered with green and reddish trees under a cloudy sky. The image should be transformed into a Pixar-style animation, maintaining the likeness and expression of the person, but with the enchanting and whimsical characteristics typical of Pixar animations.

对应的翻译为:

一张快乐男子在户外的照片,他穿着浅蓝色的 Polo 衫,背着背包。他是亚洲人,有短黑发,背景是山脉,山上覆盖着绿色和红色的树木,天空多云。他的笑容温暖。这张图片应该被转化为皮克斯风格的动画,保持人物的相似性和表情,但具有皮克斯动画典型的迷人和异想天开的特点。

我旋即明白了,图片画得不像我,就是 ChatGPT 识图后总结提示词的原因。这里只描述为「亚洲人」、「快乐男子」和「短黑发」,至于脸型、五官之类的,丝毫没有涉及,那当然没有办法「完美复刻」了。

我在视频中提到了这个问题。有观众提示我说可能是在上传人像的时候,ChatGPT自动做了面部模糊化处理以保护人物肖像权,我觉得非常有道理。回头我准备找个卡通头像上传上去试试看。

看完了这个有趣的例子,咱们该讲讲严肃的事儿了 —— 如何利用 GPT-4 全模式 (All Tools) 帮助你更好地学习和工作?

学习

咱们先从一个最常见的场景开始 —— 上课的时候,看到课件里面的英文不会,该怎么办?

efad3a0242244ec008fe382a3fc2ddb3.jpeg

这时候,你可以拍张照或者截屏,让 GPT-4 全模式 (All Tools) 帮助你来翻译。上面这张幻灯截图,它的翻译如下:

描述了使用大语言模型(LLM)时的提示(prompting)能做什么。图片中提到,如果给一个刚刚毕业的大学生一些指导,他们是否能够完成任务。为了更加清晰明了,假设情况如下:

没有互联网或其他资源的访问权限

对你的公司 / 业务没有特定的培训

没有完成先前任务的记忆

每次都会得到一个不同的新毕业的大学生

图片旨在探讨在没有额外资源和指导的情况下,一个新毕业的大学生是否能够根据给定的指导完成任务。

你可能对此不屑一顾 —— 这简单的翻译功能,我手机上的 XX 应用,早就有了。

没错,但是 ChatGPT 可不仅仅会翻译哦。你看到一页幻灯,如果对其中内容有不清楚的地方,可以立即呼唤你的这个「私人助教」来帮忙总结和解答。例如下面这页幻灯,是吴恩达老师在新课程 Generative AI for everybody 中对「监督学习」应用的总结。

763acb05a8e7924aebfe9fa6f401c2a4.jpeg

我截图发给 GPT-4 全模式 (All Tools) ,要求用中文总结图中内容。

13c6152260d7e83dcc2b9be3c007ec53.jpeg

这是 GPT-4 的回答:

这张图片是 Andrew Ng 在讲解监督学习的应用。图片中列出了不同的输入、输出和相应的应用场景。例如,输入可以是电子邮件,输出是判断这封邮件是否为垃圾邮件,应用场景是垃圾邮件过滤。其他的应用还包括在线广告、自动驾驶车辆的其他车辆位置识别、医疗诊断、视觉检测、语音识别和餐厅评论的情感分析等。每个应用都涵盖了将输入数据(如图像、广告和用户信息、音频记录等)转换为有意义输出(如诊断、缺陷检测、文本转录等)的过程。

你看,ChatGPT 打通各个模式之后,拿来当助教非常合适,讲解耐心不厌其烦。更妙的是,你不仅可以让它识别幻灯帮你讲解,还能要求它立即给你写出对应例子的程序代码来。

编程

例如我刚刚听完 GPT-4 全模式 (All Tools) 的总结,依然对监督学习没有形象的概念。于是我下面的提示语为:

就找上面的一个例子,给我写一段监督学习的 Python 代码

ChatGPT 就立即开始干活儿了。

a6fddf45d0d1907d2687f184358d981e.gif

在你看到代码之后,是不是对监督学习的模型训练流程概念理解更加清晰了呢?有了这种快速支援,相信你学东西会更加扎实,疑问也能更及时得到解决。

况且你不要忘了,GPT-4 全模式 (All Tools) 还包含了 Advanced Data Analysis 模式,也就是可以把程序直接作用在数据集上面,帮助你实验,甚至解决实际的问题。下面我们就来看看如何用 ChatGPT 来「看到」实际的数据,并且进行分析。

数据分析

我这里举的例子,也来自于吴恩达老师的新课。他提到了很有意思的问题 ——LLM 对结构化数据处理不好。

3b92163f24640d9af716000c4535c8ab.jpeg

我觉得这个观察很有意思,但是将信将疑,于是立即就把数据截取出来尝试。我问 ChatGPT :

这个表格里面有对应的面积和价格,那么 900 sqft 的房子,对应的价格是多少?请一步步思考,并且详细说明你的解题过程

bc914445a3b367058fd59408a38c45be.jpeg

下面是 ChatGPT 的回答:

8b4fdc47838942ab807093c6b51db2d6.jpeg

你看,要公式有公式,要代码有代码。数据齐全,分析清晰。只可惜,这个线性插值计算方法并不完美,因为利用数据太少了。为了帮助 ChatGPT 改进结果,咱们还可以这样来追问:

好,但是你能否充分利用上全部数据来建模并且测算呢?

ChatGPT 旋即给了答案。

8d54e04f3be0bc878216914bc60d6188.jpeg

如果你希望了解 ChatGPT 如何计算,还可以点开被折叠的工作区,查看对应代码。

dfa64b76347cf861850bb353d0610cce.jpeg

你看,原先表格中的所有数据,确实都被使用了进来。但是,这个计算的结果是否正确?希望你能够检验一下,然后在留言区给出自己的判定答案。

论文阅读

下面这个功能,更是很多小伙伴期待已久的 —— 你可以直接把 PDF 格式的文档扔给 ChatGPT 了。GPT-4 全模式 (All Tools) 可以自动识别其中的内容,并且进行分析和回答你提出的问题。

例如,我从 arxiv.org 下载了 MemGPT 论文的全文。

4d6e5c075b2e84893d7ead485b2ed35c.jpeg

然后,我把它扔给 GPT-4 全模式 (All Tools) ,提出的要求为:

给我介绍一下这篇文章的亮点

438c12e4ed8582c22bc12e76975dc3a6.jpeg

这是 ChatGPT (速度很快)读过文章后,给出的结果。

933ed088b049ae390bc56c93dea9244a.jpeg

我们让 ChatGPT 简单翻译一下前面几段:

论文《MemGPT: 朝着作为操作系统的 LLMs》介绍了一种旨在克服当前大型语言模型(LLMs)的有限上下文窗口限制的新系统。以下是其亮点的详细说明:

1. 虚拟上下文管理:作者引入了一种技术,通过借鉴传统操作系统中的分层存储系统,扩展了LLMs的可用上下文范围,超越了标准固定长度上下文窗口的限制。这种技术被称为虚拟上下文管理,通过在快速和慢速存储层之间的数据移动,实现了更大内存的幻象。 

2. MemGPT系统:基于这种技术,派生出了MemGPT系统,它利用分层存储结构和中断来管理LLM、存储器和用户之间的数据流和控制。该系统可以在任务进行过程中调整上下文,更有效地利用有限的上下文。 

3. 在文档分析和对话代理方面的性能:论文展示了MemGPT在文档分析和多会话聊天领域的增强性能。它能够分析大量文档并保持长期交互,超越了LLM的上下文窗口限制。 

很好,这至少证明 ChatGPT 看懂了 PDF 论文全文内容。你也可以就文本内容提出问题,让它来回答。不过类似的内容,我在讲 Chatdoc 的时候都演示过了。这回咱们要充分利用它的全模式功能,搞点儿新花样。

我要求:

把上述内容,用图展示出来,要求让一个中学生能够看懂

于是 ChatGPT 这样绘制:

dde05625f3a5779721d5c8b65cc78ca0.jpeg

25651077d2876ac5329d85593255f609.jpeg

我们放大一下第一张图。

608a3c99ec23805e24665352679a389f.jpeg

这张图非常有趣。它知道论文主角是一个机器大脑,要解决的问题是记忆体的限制。图中主体设计成一种类似操作系统的架构,上面是个戴学士帽的机器人。联接的小图都是与上下文、记忆体、检索能力相关,还提到了「快速」等特性。另外还有很多相关的文字作为讲解介绍。

当然了,这个图的毛病,也是显而易见的。例如说里面出现了很多奇怪的单词,都像是半文盲写的 —— 有很多拼写错误。不过你不用担心,这只是个开始。你要相信 LLM 的演进速度。

绘图做完了,咱们尝试一下表格数据的读取。这里我选择了 Table 2 的内容作为样例。

afe2ff610387abe26e51f15188ab4945.jpeg

我要求 ChatGPT 来总结其内容,并且进行可视化:

131c0656e5cc97fb8c35453b4d3b87ae.gif

这里咱们看看其操作过程的细节。

首先, ChatGPT 确实在上传的 PDF 里面,找到了表格 2 对应的位置和内容。

af0e3d337e411237e6da361f571687f3.jpeg

然后,ChatGPT 进行了编程计算,最终给出了下图的结果。

66d47b2751191297bedf4dc4f06c4fe3.jpeg

初看这张图,你可能会很不以为然。没错,这张图确实画错了。F1, Precision 和 Recall 如果真的这么惨不忍睹,也就没有汇报的必要了。但是,这错误也是有原因的。

eecde8c712b87cb911f28d38b276cf20.jpeg

原始论文中,对 Accuracy (准确率)和其他三个指标,表现形式就不一样 —— 前者是百分数,后者是小数。目前 ChatGPT 对于同一表格不同列数据这种转换,还没有做到灵活自如,因此才会出这样的纰漏。

f4a992ed6717f93d83919799d7091aa0.jpeg

但是你看到,不论是模型类型、图例说明和对应数据,ChatGPT 在读取表格的时候,确实已经尽可能做到了一一对应。因此,只要你在后续对话中稍加提示,绘图效果就会大不一样。

所以,现在的 GPT-4 全模式 (All Tools) 确实是可以「看到」图和表,这对于我们来说,意义很大 —— 论文中出现的数据,你至少可以更为灵活自如地进行二次分析与验证了。

小结

本文我为你介绍了自己使用 GPT-4 全模式 (All Tools) 来辅助工作和学习的一些心得体会。总体来说,ChatGPT 全模式打通之后,可以更方便调用各种「艺能」。它可以帮助你更快速理解消化新信息、按照你的个性化要求给出样例,根据上下文做出总结问答,并且帮你进行自动数据分析。希望这些功用的分享,可以帮助你更高效地完成任务,获得新知。

祝(更强悍的)AI 工具使用愉快!

点赞 +「在看」,转发给你身边有需要的朋友。收不到推送?那是因为你只订阅,却没有加星标

欢迎订阅我的小报童付费专栏,每季度更新不少于10篇文章。订阅一整年价格优惠。

148ae145f2417c4b8cfe57b1de553763.jpeg

如果有问题咨询,或者希望加入社群和热爱钻研的小伙伴们一起讨论,订阅知识星球吧。不仅包括小报童的推送内容,还可以自由发帖与提问。之前已经积累下的帖子和问答,就有数百篇。足够你好好翻一阵子。知识星球支持72小时内无条件退款,所以你可以放心尝试。

b9f9323e4e34cab012ad2009e6aa115b.jpeg

若文中部分链接可能无法正常显示与跳转,可能是因为微信公众平台的外链限制。如需访问,请点击文末「阅读原文」链接,查看链接齐备的版本。 

延伸阅读

  • 如何用 ChatGPT 的 Advanced Data Analysis 帮你采集数据?

  • 如何用 ChatGPT 帮你自动分析数据?

  • 如何用 ChatGPT 做数据进阶可视化?(三维交互图与动图视频)

  • 笔记本上就能跑的 LLM 好使吗?GPT4ALL 体验

  • 如何让 ChatGPT 更懂你?新功能 Custom Instructions 尝试


http://www.ppmy.cn/news/1198123.html

相关文章

目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】SLAM(补充篇)

目录 前言 知识储备 SLAM基础知识 算法原理 什么是SLAM SLAM算法框架

【LearnOpenGL基础入门——1】OpenGL简介

目录 一.OpenGL是什么 二.渲染模式 三.前置知识 四.写在最后 一.OpenGL是什么 我们首先先了解一下OpenGL到底是什么。一般我们认为是包含了一系列可以操作图形、图像的函数的一套API。然而,OpenGL本身并不是一个API,它仅仅是一个由Khronos组织制定并…

制作一个可以arm架构下运行的docker镜像(for Python)

看完本篇文章,你将得到一个可以arm架构下运行的python 基础镜像。 题外话 这里直接说docker镜像有点儿草率,因为目前很多容器都是Podman了。 podman的介绍 arm和aarch傻傻分不清楚 现在这两个是一样的意思了。 arm64和aarch64之间的区别 开始制作镜…

CleanMyMac X2024破解版下载地址链接

如果你是一位Mac用户,你可能会遇到一些问题,比如Mac运行缓慢、磁盘空间不足、应用程序难以管理等。这些问题会影响你的Mac的性能和体验,让你感到沮丧和无奈。那么,有没有一款软件可以帮助你解决这些问题呢?答案是肯定的…

Win11新电脑启动无无线网络连接解决办法

Win11新电脑启动无无线网络连接解决办法 前言一、解决方法 前言 今天笔者在使用学校实验室分配的新电脑时候,发现在新激活的时候需要让我连接到无线网络,但不管鼠标怎么点都操作不了,于是在卡在这里了,唯一的办法就是跳过此页面&…

NLP之Bert介绍和简单示例

文章目录 1. Bert 介绍2. 代码示例2.1 代码流程 1. Bert 介绍 2. 代码示例 from transformers import AutoTokenizertokenizer AutoTokenizer.from_pretrained("bert-base-chinese") input_ids tokenizer.encode(欢迎来到Bert世界, return_tensorstf) print(input…

华为政企网络安全产品集

产品类型产品型号产品说明 防火墙及应用安全网关ASG5505ASG5000系列上网行为管理产品(以下简称“ASG5000”)是华为面向各类企业、政府、大中型数据中心以及各类无线非经营性场所推出的业界领先的综合上网行为管理产品。 该系列产品可深度识别、管控和…

Java并发面试题知识点总结(上篇)

大家好,我是栗筝i,从 2022 年 10 月份开始,我便开始致力于对 Java 技术栈进行全面而细致的梳理。这一过程,不仅是对我个人学习历程的回顾和总结,更是希望能够为各位提供一份参考。因此得到了很多读者的正面反馈。 而在…