Spring cloud负载均衡 @LoadBalanced注解原理

news/2024/11/8 21:04:16/

接上一篇文章,案例代码也在上一篇文章的基础上。

在上一篇文章的案例中,我们创建了作为Eureka server的Eureka注册中心服务、作为Eureka client的userservice、orderservice。

orderservice引入RestTemplate,加入了@LoadBalanced注解,代码如下:

package com;@SpringBootApplication
@EnableEurekaClient
public class OrderServiceApplication {public static void main(String[] args) {SpringApplication.run(OrderServiceApplication.class);}@Bean@LoadBalancedpublic RestTemplate restTemplate(){return new RestTemplate();}}

从而,我们实现了基于Eureka注册中心的微服务治理框架,在orderservice调用userservice的时候通过加了@LoadBalanced注解的RestTemplate实现了负载均衡。

今天的目标是:深入研究@LoadBalanced生效的底层原理。

@LoadBalanced是怎么实现负载均衡的?

我们要回答的第一个问题是,为什么@LoadBalanced能实现负载均衡?

我们从代码的源头一路追查下去…

orderservice通过RestTemplate实现对userservice的调用代码:

@Service
public class OrderService {@Autowiredprivate RestTemplate restTemplate;public String getOrder(){//通过userService获取user信息String url="http://userservice/user/getUser";System.out.println("url"+url);User user=restTemplate.getForObject(url,User.class);System.out.println(user);return user.getName();}
}

很容易的,我们需要有一个认知:这里访问的地址http://userservice/user/getUser只可能在Spring cloud服务治理环境下有意义,最终能访问到我们发布到本机上的userservice的如下服务:

1. http://localhost:8080
2. http://localhost:8081
3. http://localhost:8082

必定需要借助Spring Cloud的某一机制将http://userservice转换为上述地址之一。这个转换过程,也就是Spring Cloud的负载均衡机制。

跟踪getForObject:

	@Override@Nullablepublic <T> T getForObject(String url, Class<T> responseType, Object... uriVariables) throws RestClientException {RequestCallback requestCallback = acceptHeaderRequestCallback(responseType);HttpMessageConverterExtractor<T> responseExtractor =new HttpMessageConverterExtractor<>(responseType, getMessageConverters(), logger);return execute(url, HttpMethod.GET, requestCallback, responseExtractor, uriVariables);}

调用到execute方法:

	@Override@Nullablepublic <T> T execute(String url, HttpMethod method, @Nullable RequestCallback requestCallback,@Nullable ResponseExtractor<T> responseExtractor, Object... uriVariables) throws RestClientException {URI expanded = getUriTemplateHandler().expand(url, uriVariables);return doExecute(expanded, method, requestCallback, responseExtractor);}

doExecute方法:

@Nullableprotected <T> T doExecute(URI url, @Nullable HttpMethod method, @Nullable RequestCallback requestCallback,@Nullable ResponseExtractor<T> responseExtractor) throws RestClientException {Assert.notNull(url, "URI is required");Assert.notNull(method, "HttpMethod is required");ClientHttpResponse response = null;try {ClientHttpRequest request = createRequest(url, method);if (requestCallback != null) {requestCallback.doWithRequest(request);}response = request.execute();handleResponse(url, method, response);return (responseExtractor != null ? responseExtractor.extractData(response) : null);}catch (IOException ex) {String resource = url.toString();String query = url.getRawQuery();resource = (query != null ? resource.substring(0, resource.indexOf('?')) : resource);throw new ResourceAccessException("I/O error on " + method.name() +" request for \"" + resource + "\": " + ex.getMessage(), ex);}finally {if (response != null) {response.close();}}}

createRequest方法:

	protected ClientHttpRequest createRequest(URI url, HttpMethod method) throws IOException {ClientHttpRequest request = getRequestFactory().createRequest(url, method);initialize(request);if (logger.isDebugEnabled()) {logger.debug("HTTP " + method.name() + " " + url);}return request;}

最关键的部分来了,就是这个 getRequestFactory()方法,在RestTemplate的父类InterceptingHttpAccessor中定义:

    private final List<ClientHttpRequestInterceptor> interceptors = new ArrayList<>();public ClientHttpRequestFactory getRequestFactory() {List<ClientHttpRequestInterceptor> interceptors = getInterceptors();if (!CollectionUtils.isEmpty(interceptors)) {ClientHttpRequestFactory factory = this.interceptingRequestFactory;if (factory == null) {factory = new InterceptingClientHttpRequestFactory(super.getRequestFactory(), interceptors);this.interceptingRequestFactory = factory;}return factory;}else {return super.getRequestFactory();}}public List<ClientHttpRequestInterceptor> getInterceptors() {return this.interceptors;}

首先通过getInterceptor()方法检查是否有有拦截器,拦截器interceptors是由ClientHttpRequestInterceptor组成的一个list。如果有的话,就会创建InterceptingClientHttpRequestFactory、并且将拦截器interceptors送给InterceptingClientHttpRequestFactory工厂之后,返回工厂InterceptingClientHttpRequestFactory。

然后,方法调用返回到createRequest方法中,调用InterceptingClientHttpRequestFactory的createRequest方法,最终会调用到:

	@Overrideprotected ClientHttpRequest createRequest(URI uri, HttpMethod httpMethod, ClientHttpRequestFactory requestFactory) {return new InterceptingClientHttpRequest(requestFactory, this.interceptors, uri, httpMethod);}

方法最终返回的是InterceptingClientHttpRequest,并且,会将工厂InterceptingClientHttpRequestFactory持有的interceptors传递给InterceptingClientHttpRequest对象:

protected InterceptingClientHttpRequest(ClientHttpRequestFactory requestFactory,List<ClientHttpRequestInterceptor> interceptors, URI uri, HttpMethod method) {this.requestFactory = requestFactory;this.interceptors = interceptors;this.method = method;this.uri = uri;}

之后返回到doExecute方法中,会调用InterceptingClientHttpRequest的父类AbstractClientHttpRequest类的execute方法、之后又转回到InterceptingClientHttpRequest类的executeInternal方法:

	@Overrideprotected final ClientHttpResponse executeInternal(HttpHeaders headers, byte[] bufferedOutput) throws IOException {InterceptingRequestExecution requestExecution = new InterceptingRequestExecution();return requestExecution.execute(this, bufferedOutput);}

executeInternal方法创建了InterceptingClientHttpRequest内部类InterceptingRequestExecution对象之后,调用内部对象的execute方法。

查看内部类InterceptingRequestExecution,不难发现,他拿到了宿主类InterceptingClientHttpRequest的拦截器interceptors的迭代器:

private class InterceptingRequestExecution implements ClientHttpRequestExecution {private final Iterator<ClientHttpRequestInterceptor> iterator;public InterceptingRequestExecution() {this.iterator = interceptors.iterator();}@Overridepublic ClientHttpResponse execute(HttpRequest request, byte[] body) throws IOException {if (this.iterator.hasNext()) {ClientHttpRequestInterceptor nextInterceptor = this.iterator.next();return nextInterceptor.intercept(request, body, this);}else {HttpMethod method = request.getMethod();Assert.state(method != null, "No standard HTTP method");ClientHttpRequest delegate = requestFactory.createRequest(request.getURI(), method);request.getHeaders().forEach((key, value) -> delegate.getHeaders().addAll(key, value));if (body.length > 0) {if (delegate instanceof StreamingHttpOutputMessage) {StreamingHttpOutputMessage streamingOutputMessage = (StreamingHttpOutputMessage) delegate;streamingOutputMessage.setBody(outputStream -> StreamUtils.copy(body, outputStream));}else {StreamUtils.copy(body, delegate.getBody());}}return delegate.execute();}}}

然后在execute方法中首先遍历该迭代器iterator并调用迭代器对象ClientHttpRequestInterceptor的intercept方法。

拦截器ClientHttpRequestInterceptor就是实现负载均衡的关键所在,Spring正是在拦截器ClientHttpRequestInterceptor的intercept方法中,完成了负载均衡的实现:将请求中的服务名称比如本案例中的userservice、替换成了由Eureka注册中心下发下来的具体的userservice服务器(比如http://127.0.0.1:8081)

我们发现最关键的部分就是RestTemplate对象中的拦截器interceptors。

接下来的问题就是:interceptors是什么时候、怎么创建出来的?

拦截器的初始化

从RestTemplate的父类InterceptingHttpAccessor简单追踪一下,不难发现他的interceptors是通过setInterceptors方法赋值的,然后借助开发工具的帮助:
在这里插入图片描述
发现LoadBalanceAutoConfiguration调用了setInterceptors方法。

这个LoadBalanceAutoConfiguration的命名方式是不是很熟悉啊?我们前面分析过SpringBoot的自动配置,就是各种xxxxAutoConfiguration命名的类负责具体的自动配置任务的。

简单了解了下,LoadBalanceAutoConfiguration就是SpringBoot的自动配置类。我们找到LoadBalanceAutoConfiguration类在spring-cloud-commons包下,按图索骥,我们找到了包下的/META-INF/spring.factories文件:
在这里插入图片描述
因此我们知道,SpringBoot的自动配置机制会通过调用LoadBalanceAutoConfiguration类来完成LoadBalance的相关初始化工作。
所以我们接下来的工作就是要研究LoadBalanceAutoConfiguration。

LoadBalanceAutoConfiguration

第一步,从LoadBalanceAutoConfiguration类的源码知道他要通过restTemplateCustomizer方法加载一个RestTemplateCustomizer对象,方法需要一个参数LoadBalancerInterceptor:

		@Bean@ConditionalOnMissingBeanpublic RestTemplateCustomizer restTemplateCustomizer(final LoadBalancerInterceptor loadBalancerInterceptor) {return restTemplate -> {List<ClientHttpRequestInterceptor> list = new ArrayList<>(restTemplate.getInterceptors());list.add(loadBalancerInterceptor);restTemplate.setInterceptors(list);};}

先看一眼RestTemplateCustomizer类,只有一个customize方法,该方法有一个参数RestTemplate:

public interface RestTemplateCustomizer {void customize(RestTemplate restTemplate);}

这个customize方法已经在restTemplateCustomizer方法中通过lamda表达式定义出来了,代码逻辑很简单:

就是要将LoadBalancerInterceptor拦截器对象通过调用RestTemplate的setInterceptors方法加入到RestTemplate的interceptors中!

似乎快要摸到开关了!!!

那么我们现在又冒出了以下几个问题:

  1. 这个LoadBalancerInterceptor从哪里来?
  2. RestTemplate从哪里来?
  3. 什么时候调用这个已经注入到Spring Ioc容器中的RestTemplateCustomizer的customize方法?

第1、第2两个问题其实很简单。看代码:

    @Configuration(proxyBeanMethods = false)@Conditional(RetryMissingOrDisabledCondition.class)static class LoadBalancerInterceptorConfig {@Beanpublic LoadBalancerInterceptor loadBalancerInterceptor(LoadBalancerClient loadBalancerClient,LoadBalancerRequestFactory requestFactory) {return new LoadBalancerInterceptor(loadBalancerClient, requestFactory);}...
}

LoadBalancerAutoConfiguration类中有一个静态配置类LoadBalancerInterceptorConfig,通过loadBalancerInterceptor方法注入了LoadBalancerInterceptor 对象,创建对象的时候通过参数注入了loadBalancerClient和LoadBalancerRequestFactory。

第2个问题,RestTemplate的注入,其实是我们从应用层通过@Bean注入的,同时加了@LoadBalanced注解。

现在我们来回答第3个问题:

什么时候调用这个已经注入到Spring Ioc容器中的RestTemplateCustomizer的customize方法?

比前两个问题稍稍复杂了一点:

	@LoadBalanced@Autowired(required = false)private List<RestTemplate> restTemplates = Collections.emptyList();@Beanpublic SmartInitializingSingleton loadBalancedRestTemplateInitializerDeprecated(final ObjectProvider<List<RestTemplateCustomizer>> restTemplateCustomizers) {return () -> restTemplateCustomizers.ifAvailable(customizers -> {for (RestTemplate restTemplate : LoadBalancerAutoConfiguration.this.restTemplates) {for (RestTemplateCustomizer customizer : customizers) {customizer.customize(restTemplate);}}});}

首先看到标注了@Autowire和@LoadBalanced注解的RestTemplates列表的注入,意思是: 如果有加了@LoadBalanced注解的RestTemplates bean的话,就自动装配到restTemplates 变量中。

之后,通过loadBalancedRestTemplateInitializerDeprecated方法注入了一个SmartInitializingSingleton,我们知道SmartInitializingSingleton在装配到Spring Ioc之后会调用他的afterSingletonsInstantiated()方法。这里注入的SmartInitializingSingleton通过lamda实现了afterSingletonsInstantiated()方法,代码逻辑:通过方法参数打包注入到Ioc容器中的RestTemplateCustomizer(前面讲过了,他已经注入到IoC容器中了)到restTemplateCustomizers中,然后遍历restTemplates(这个list在前面说过了,已经把我们通过@Bean和@LoadBalanced注解的RestTemplate对象注入进来了)、针对每一个RestTemplate再遍历restTemplateCustomizers中的RestTemplateCustomizer对象,逐个调用他的customize方法。

OK!对于@LoadBalanced注解从应用、到初始化、生效机制,我们就分析清楚了。

最后还遗留两个小问题,初始化和应用两端各一个:初始化过程中的装配到loadBalancerInterceptor对象中的LoadBalancerClient具体是什么对象、什么时候注入的?应用端最终的负载均衡策略、负载均衡实现逻辑,我们还没具体分析。

下一篇文章解决上述两个问题。


http://www.ppmy.cn/news/1195550.html

相关文章

这个超实用的门禁技巧,让办公楼安全更简单高效!

门禁监控是现代社会中不可或缺的一部分&#xff0c;用于确保安全和管理进出某个区域的人员。随着科技的不断发展&#xff0c;门禁监控已经远离了传统的机械锁和钥匙&#xff0c;变得更加智能化和高效。 客户案例 企业办公大楼 无锡某大型企业在其办公大楼内部部署了泛地缘科技…

MongoDB安装及开发系例全教程

一、系列文章目录 一、MongoDB安装教程—官方原版 二、MongoDB 使用教程(配置、管理、监控)_linux mongodb 监控 三、MongoDB 基于角色的访问控制 四、MongoDB用户管理 五、MongoDB基础知识详解 六、MongoDB—Indexs 七、MongoDB事务详解 八、MongoDB分片教程 九、Mo…

Goland 对容器中的 Go 程序断点远程调试

1&#xff0c;针对 golang 程序打断点有哪几种情况 临时进程&#xff1a;针对临时运行一次的 Golang 脚本&#xff0c;比如定时统计脚本&#xff0c;定时推送脚本。常驻进程&#xff1a;针对一直在后台运行的 Golang 程序&#xff0c;比如 HTTP 或者 GRPC 服务。 我们现在假设…

BIOS开发笔记 – 显示

UEFI启动流程跑完前三阶段,UEFI环境的准备基本完成,到BDS阶段的任务就是准备引导OS。在此之前还需要使一些必要的硬件工作起来,比如键盘设备,屏幕等,怎么让屏幕工作呢?简单的说就是执行其相关的UEFI驱动。要注意一下的是,这里所说的驱动并不是屏幕的驱动,而是GPU的驱动…

java服务器环境配置以及项目搭建

一. 内容简介 使用Mavn聚合工程&#xff0c;springboot整合spring,springmvc,mybatis框架&#xff0c;完成项目搭建 二. 软件环境 2.1 java 1.8.0_144 2.2 mysql Ver 8.0.30( 8.10的好像出问题&#xff0c;我给重装了) 2.3 IntelliJ IDEA 2023.1 2.4 Apache Maven 3.9.5 …

离散数学实践(2)-编程实现关系性质的判断

*本文为博主本人校内的离散数学专业课的实践作业。由于实验步骤已经比较详细&#xff0c;故不再对该实验额外提供详解&#xff0c;本文仅提供填写的实验报告内容与代码部分&#xff0c;以供有需要的同学学习、参考。 -------------------------------------- 编程语言&#xff…

MySql表自修改报错:You can‘t specify target table ‘student‘ for update in FROM clause

文章目录 一、发现问题二、场景1&#xff1a;在where条件中查询了修改表的数据三、场景2&#xff1a;在set语句中查询了修改表的数据 一、发现问题 在一次准备处理历史数据sql时&#xff0c;出现这么一个问题&#xff1a;You cant specify target table 表名 for update in FR…

AM@点与点集的关系@n维空间邻域

文章目录 abstract坐标平面平面点集 平面邻域利用邻域描述点与点集的关系聚点点集分类 n n n维空间基础概念线性运算和空间概念 空间中的两点距离 n n n维空间中的变元极限 n n n维空间内的邻域 abstract 坐标平面和平面点集, n n n维空间点集点与点集的关系n维空间及其邻域 …