C语言KR圣经笔记 2.8自增和自减 2.9位运算 2.10赋值

news/2024/10/18 6:05:37/

2.8 自增和自减操作符

C提供了两个不同寻常的操作符,用于对变量进行自增和自减。自增操作符++对操作数加上1,而自减操作符 -- 对操作数减去1。我们已经频繁使用++ 对变量进行自增,如:

if (c == '\n')++nl;

不寻常之处在于 ++ 和 -- 既能用作前缀操作符(在变量之前,如++n),又能用作后缀(在变量之后,如n++)。两种情况下,效果都是n递增。不过表达式 ++n 是在它的值被使用之前对n进行递增,而 n++是在它的值被使用之后对n进行递增。这意味着如果不仅要用到递增的效果,还要用到表达式的值时,++n 和 n++ 是不一样的。如果 n 为 5,则

x = n++;

将x设为5,而

x = ++n;

将x设为6。两种情况下,n都会变成6。自增和自减操作符只能用于变量;像 (i+j)++ 这样的表达式是非法的。

当只需要用到递增效果,而不需要值的时候,如

if (c == '\n')nl++;

前缀和后缀是一样的。不过有些情况下会专门要求使用前缀,而有些则专门使用后缀。举个例子,看看下面这个函数 squeeze(s, c) ,将字符串s中出现的所有字符c都删除:

/* squeeze: 从s中删除所有的c */
void squeeze(char s[], int c)
{int i, j;for (i = j = 0; s[i] != '\0'; i++)if (s[i] != c)s[j++] = s[i];s[j] = '\0'; 
}

每当非c字符出现时,它就被拷贝到当前的 j 位置,而只有这时 j 才会自增,为接收下一个字符做准备。与下面的写法是完全相同的:

if (s[i] != c) {s[j] = c;j++;
}

类似结构的另一个例子来自于我们在第一章写的 getline 函数,其中的

if (c == '\n') {s[i] = c;i++;
}

可以替换成更紧凑的形式:

if (c == '\n')s[i++] = c;

第三个例子可以看看标准库函数 strcat(s, t),它将字符串 t 连接到字符串 s 的末尾。strcat 假定 s 有足够的空间来存放合并的结果。按我们下面的写法, strcat 不返回值,标准库的strcat版本返回指向结果字符串的指针。

/* strcat: 把t拼接到s的末尾;s必须足够大 */
void strcat(char s[], char t[])
{int i, j;i = j = 0;while (s[i] != '\0')    /* 找到s的结尾 */++s;while ((s[i++] = t[j++]) != '\0')    /* 拷贝t */;
}

由于每个字符都要从 t 拷贝到 s,++后缀同时用于 i 和 j,以保证它们在循环的下一轮时处于正确的位置。

练习2-4,写另一个版本的 squeeze(s1, s2),把字符串s1中出现的所有字符串 s2 都删除

练习2-5,写一个函数 any(s1, s2),返回字符串s2中任意字符在字符串s1中首次出现的位置,如果s1不包含s2的任何字符,则返回-1。(标准库函数 strpbrk 做同样的事,但返回的是位置的指针)

2.9 位运算操作符

C提供了六个位操作符;它们只能用于整型,即 char, short, int 和 long,不管有无符号均可。

&        按位与

|        按位或

^        按位异或

<<        左移

>>        右移

~        取反(一元)

按位与操作符 & 经常用于屏蔽位中的某些部分;例如

 n = n & 0177

只保留 n 的低7位,其他位都设为0。

按位或操作符 |  用于将一些位打开(设为1)

x = x | SET_ON

会将 SET_ON 中为1的位设置到 x 上对应的位。

按位异或操作符 ^ 的规则是:若两个操作数对应的位不同时,则运算结果中该位设为1,若相同则设为0。

必须把位操作符 &  |  和逻辑运算符 && || 区分开,后者隐含的是从左到右的真值计算。

例如,如果 x是1,y 是2,则 x & y 结果为0 ,而 x && y 结果是1。

移位操作符 << 和 >> 分别对它们左边的操作数进行左移或者右移,移动的位数由右边的操作数(必须为正数)指定。这样  x << 2 会将 x 的值左移两位,空出的位补0;这就等于乘以 4。对 unsigned 值进行右移,空位总是补0。对有符号的值进行右移,在有些机器上会填充符号位(算术移位),而有些机器上填充0(逻辑移位)。

一元操作符 ~ 得出整数的反码,也就是说,把每个1都转成0,每个0都转成1。例如

x = x & ~077

把 x 的低6位设为0。注意 x & ~077 不依赖于字长,这种写法比假定字长的写法好,比如 x & 0177700 假定 x 是 16位的值。可移植的写法不涉及额外的开销,因为 ~077 是常量,可以在编译期间求值。

函数 getbits(x, p, n) 可用来演示一些位操作符的用法,该函数返回 x 从位置 p 算起的 n 个位(右对齐)。我们假定第0位是最右边一位,并且 n 和 p 都是合适的正数。例如, getbits(x, 4, 3) 返回第 4,第3 和 第2 位的三个比特,右对齐。

/* getbits:返回从位置 p 开始的 n 个比特 */
unsigned getbits(int x, int p, int n)
{return x >> (p+1-n) & ~(~0 << n);
}

表达式 x >> (p+1-n) 把所需的比特位段移到字的最右边。~0 是所有位均为1;用 ~0 << n 把它左移 n 位,会把最右边的 n 个位变为 0;再对它取反,就得到一个最右边 n 位 都是 1 的掩码。

练习2-6、写个函数 setbits(x,p,n,y),返回值是 x 从位置 p 开始 的 n 个位 被 y 的最右边 n 个位替换后得到的值,x 其他位都不变。

练习2-7、写个函数 invert(x,p,n) ,返回值是 x 从位置 p 开始的 n 个位被翻转(即0变1,1变0)后的结果,其他位都不变。

练习2-8、 写个函数 rightrot(x,n),返回值是整数 x 向右旋转了 n 个位。

2.10 赋值操作符和表达式

 i = i + 2

像这种左侧的变量在右边马上重复出现的表达式,可以写成紧凑的形式:

i += 2

其中操作符 += 被称为 赋值操作符

大部分的二元操作符(像 + 这样左右两边各有一个操作数的操作符)都有一个对应的赋值操作符 op=, 其中 op 是下列操作符之一

 + - * / % << >> & ^ |

设有表达式 expr1 和 expr2,则

expr1 op= expr2

等价于

expr1 = (expr1) op (expr2)

唯一区别是在前面一种形式中, expr1 只会被计算一次。注意 expr2 两边的括号:

x *= y + 1

意思是

x = x * (y+1)

而不是

x = x * y + 1

看看下面这个例子,函数 bitcounts 统计其整数参数中为1的比特位数量。

/* bitcounts: 计算x中为1的比特位数量 */
int bitcounts(unsigned x)
{int b;for (b = 0; x != 0; x >> 1)if (x & 01)b++;return b;
}

将参数 x 声明为 unsigned 可以保证,对 x 做右移时,左边填充的总是0而不是符号位,不管这个程序在什么样的机器上运行。

除了简洁之外,赋值操作符的优势在于它们与人们思考的方式更为一致。我们会说“把 i 加上 2 ”或者“ i 自增 2 ”,而不是“拿到 i 的值,加上 2, 再把结果放回 i ”。因此 表达式  i += 2 比 i = i + 2 更好。另外,对于复杂的表达式如

yyval[yypv[p3+p4] + yypv[p1]] += 2

赋值操作符使代码容易理解,因为读者不必费力地检查两个长表达式是否相等,或者疑惑它们为什么不相等。而且赋值操作符甚至能帮助编译器生成高效的代码。

我们已经知道赋值语句是有值的,可以出现在表达式中;最常见的例子是

while ((c = getchar()) != EOF)...

其他赋值操作符( +=   -= 等)也能出现在表达式中,不过出现频率会低些。

在所有这样的表达式中,赋值表达式的类型就是它左边操作数的类型,而赋值表达式的值就是赋值之后的值。

练习2-9、在2的补码系统中,x &= (x-1) 删除x最右边的一个比特位。解释为什么。并使用这个发现来写一个更快的 bitcount 版本。


http://www.ppmy.cn/news/1185651.html

相关文章

2023年中国冷风机分类、销量及市场规模分析[图]

冷风机通常是指一种设备&#xff0c;用于通过冷却空气来调节室内或工业环境的温度。这些设备通过循环空气并通过冷却元件&#xff08;如冷却盘或冷凝器&#xff09;来降低空气的温度&#xff0c;从而实现温度控制。冷风机在家庭、商业和工业领域都有广泛的应用&#xff0c;可以…

【项目实训】在线订餐系统(完整代码)

文章目录 一、实验目的二、实验内容三、实验步骤四、完整程序五、程序分析六、运行结果附:系列文章一、实验目的 会合理使用程序基本语法结构,包括变量、数据类型会使用顺序、分支、循环、跳转语句控制程序逻辑会使用数组操作字符串二、实验内容 设计一个在线订餐系统,编写…

记录CMake一键编译和生成的指令

cmake -S . -B build cmake --build build 假设当前在源代码根目录&#xff0c; 第一句话-S代表源代码根目录&#xff0c;-B指向生成中间文件的目录。 第二句话在build目录执行生成指令&#xff0c;会生成最后的可执行文件。 这两句话很实用&#xff0c;之前我总是记不住&am…

如何提升ERP的实施成功率?这5个阶段的重点要注意!

目录 花了70%预算的ERP系统&#xff0c; 只有30%的概率实施成功可不行&#xff01; 鼎捷专家解惑&#xff1a;ERP实施别踩雷&#xff01; ERP实施分阶段&#xff0c;重点清晰才好办 01 项目启动阶段工作重点 02 机制流程规划阶段工作重点 03 流程和数据验证重点 04 实施…

天气数据可视化平台-计算机毕业设计vue

天气变幻无常&#xff0c;影响着我们生活的方方面面&#xff0c;应用天气预报信息可以及时了解天气的趋势&#xff0c;给人们的工作、生活等带来便利&#xff0c;也可以为我们为未来的事情做安排和打算&#xff0c;所以一个精准的、易读 通过利用 程序对气象网站大量的气象信息…

【计算机网络】分层模型和应用协议

网络分层模型和应用协议 1. 分层模型 1.1 五层网络模型 网络要解决的问题是&#xff1a;两个程序之间如何交换数据。 四层&#xff1f;五层&#xff1f;七层&#xff1f; 2. 应用层协议 2.1 URL URL&#xff08;uniform resource locator&#xff0c;统一资源定位符&#…

一周通过Professional Scrum Master(PSM1)考试准备分享

目录 一、为什么要考PSM 二、考试培训费用 三、学习时间 四、备考流程 1.通读Scrum Guide 2.完成Scrum Open的练习题3次 3.找题库刷题 4.再次完成Scrum Open的练习题3次 5.正式参加考试 五、其他考试准备 1.考试资格购买 2.语言 六、后记 一、为什么要考PSM 市面上有不少…

CentOS7安装配置MobaXterm使用换源处理虚拟机拍照备份与还原Linux常用命令

目录 一、centos7安装与配置 1.1 参考安装步骤 1.2 安装配置CentOS 7实操 1.2.1 配置虚拟机 1.2.2 登录CenOS 1.2.3 检测是否可联网 1.2.4 查看、设置IP地址 1.2.5 使用vi编辑ifcfg-ens33 1.2.6 重启网络服务 1.3 MobaXterm使用 1.3.1 官方下载地址 1.3.2 MobaXte…