基于FPGA的图像自适应阈值二值化算法实现,包括tb测试文件和MATLAB辅助验证

news/2024/11/20 10:26:17/

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1Otsu方法

4.2 Adaptive Thresholding方法

4.3、FPGA实现过程

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

Vivado2019.2

matlab2022a

3.部分核心程序

`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date: 2022/07/28 01:51:45
// Design Name: 
// Module Name: test_image
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//module test_image;reg i_clk;
reg i_rst;
reg [7:0] image_buff [0:100000];
reg [7:0] II0;
wire [7:0] o_Ifilter;wire [7:0] o_Ifilter2;
integer fids,jj=0,dat;//D:\FPGA_Proj\FPGAtest\codepzinitial 
beginfids = $fopen("D:\\FPGA_Proj\\FPGAtest\\codepz\\data.bmp","rb");dat  = $fread(image_buff,fids);$fclose(fids);
endinitial 
begin
i_clk=1;
i_rst=1;
#2000;
i_rst=0;
end always #10  i_clk=~i_clk;always@(posedge i_clk) 
beginII0<=image_buff[jj];jj<=jj+1;
endtops tops_u(
.i_clk              (i_clk),
.i_rst              (i_rst),
.i_I0               (II0),
.o_Ifilter          (o_Ifilter) ,
.o_Ifilter2         (o_Ifilter2)
);integer fout1;
initial beginfout1 = $fopen("o_Ifilter.txt","w");
endalways @ (posedge i_clk)beginif(jj<=66614)$fwrite(fout1,"%d\n",o_Ifilter);else$fwrite(fout1,"%d\n",0);
end
integer fout2;
initial beginfout2 = $fopen("o_Ifilter2.txt","w");
endalways @ (posedge i_clk)beginif(jj<=66614)$fwrite(fout2,"%d\n",o_Ifilter2);else$fwrite(fout2,"%d\n",0);
end
endmodule
0X_017m

4.算法理论概述

       图像二值化是数字图像处理中的一种常见技术,可以将灰度图像转换为黑白二值图像,突出图像的轮廓和特征。自适应阈值二值化是一种常用的图像二值化方法,能够根据图像局部区域的灰度分布自适应地确定阈值,从而实现更好的二值化效果。

      自适应阈值二值化算法的基本原理是将图像分为若干个小的子区域,每个子区域内的像素点使用一个共同的阈值进行二值化处理。这个阈值是根据子区域内像素点的灰度分布自适应计算得到的。常用的自适应阈值二值化方法包括Otsu方法和Adaptive Thresholding方法。

4.1Otsu方法

       Otsu方法是一种基于灰度直方图的阈值选择方法,通过优化类间方差来自动确定阈值。设图像的灰度级范围为0~255,灰度直方图表示每个灰度级的像素点数量。Otsu方法的目标是最优地选择一个阈值T,将图像分为前景和背景两部分,使得这两部分的类间方差最大。类间方差公式如下:

σb = w0 * w1 * (μ0 - μ1)²

      其中,w0和w1分别是前景和背景的像素点数量所占比例,μ0和μ1分别是前景和背景的灰度平均值。Otsu方法通过求解类间方差的最大值来自动确定最优阈值T。

4.2 Adaptive Thresholding方法

        Adaptive Thresholding方法是一种基于局部灰度分布的阈值确定方法。该方法将图像分成若干个小的子区域,每个子区域使用一个共同的阈值进行二值化处理。阈值是根据子区域内像素点的灰度分布计算得到的。具体来说,对于每个子区域,计算其灰度平均值和标准差,将灰度平均值减去一个常数(一般为1/2),得到该子区域的阈值。如果子区域内某个像素点的灰度值大于阈值,则将其置为255(白色),否则置为0(黑色)。

4.3、FPGA实现过程

       我们这个课题主要通过4.2的方法来实现基于FPGA的图像自适应阈值二值化算法,其实现过程如下:

  1. 划分子区域:将图像划分为若干个小的子区域,每个子区域的大小可以自定义。可以使用一个二维数组来表示子区域,数组的每个元素表示一个像素点的位置和灰度值。
  2. 计算阈值:对于每个子区域,计算其灰度平均值,并根据公式计算出该子区域的阈值。可以使用Verilog中的相关模块来实现计算过程。
  3. 二值化处理:对于每个像素点,如果其灰度值大于阈值,则将其置为255(白色),否则置为0(黑色)。可以使用一个简单的if-else语句来实现这个过程。
  4. 输出二值化图像:将处理后的二值化图像数据输出到FPGA的I/O口,以供后续显示或传输使用。
  5. 时钟信号:在整个实现过程中,需要使用一个时钟信号来同步数据传输和处理过程。可以使用FPGA的时钟源来生成相应的时钟信号。

        通过将FPGA的高速并行处理能力与自适应阈值二值化算法相结合,可以实现高性能、高效率的图像处理系统。这种实现方法可以广泛应用于数字图像处理、计算机视觉、安防监控等领域。

5.算法完整程序工程

OOOOO

OOO

O


http://www.ppmy.cn/news/1168737.html

相关文章

20款VS Code实用插件推荐

前言&#xff1a; VS Code是一个轻量级但功能强大的源代码编辑器&#xff0c;轻量级指的是下载下来的VS Code其实就是一个简单的编辑器&#xff0c;强大指的是支持多种语言的环境插件拓展&#xff0c;也正是因为这种支持插件式安装环境开发让VS Code成为了开发语言工具中的霸主…

掌握Go类型内嵌:设计模式与架构的新视角

一、引言 在软件开发中&#xff0c;编程语言的类型系统扮演着至关重要的角色。它不仅决定了代码的结构和组织方式&#xff0c;还影响着软件的可维护性、可读性和可扩展性。Go语言&#xff0c;在被广泛应用于云原生、微服务和并发高性能系统的同时&#xff0c;也因其简单但强大…

【Spring Cloud】如何确定微服务项目的Spring Boot、Spring Cloud、Spring Cloud Alibaba的版本

文章目录 1. 版本选择2. 用脚手架快速生成微服务的pom.xml3. 创建一个父工程4. 代码地址 本文描述如何确定微服务项目的Spring Boot、Spring Cloud、Spring Cloud Alibaba的版本。 1. 版本选择 我们知道Spring Boot、Spring Cloud、Spring Cloud Alibaba的版本选择一致性非常重…

第三章 内存管理 十三、页面置换算法(最佳置换算法、先进先出置换算法、最近最久未使用置换算法、时钟置换算法、改进型的时钟置换算法)

目录 一、定义 二、分类 1、最佳置换算法 / 最远置换算法&#xff08;OPT&#xff0c;Optimal): 1.1、定义&#xff1a; 1.2、例子&#xff1a; 2、先进先出置换算法(FIFO&#xff09;: 2.1、定义&#xff1a; 2.2、实现方法&#xff1a; 2.3、例子&#xff1a; 3、最…

国内有哪些做得好的企业协同办公软件

在当今信息化时代&#xff0c;企业协同办公软件成为了提升企业效率和推动协作的重要工具。国内市场涌现出许多优秀的企业协同办公软件&#xff0c;为企业提供了高效、便捷的协同办公解决方案。在本文中&#xff0c;我们将向大家介绍3款在国内好评如潮的企业协同办公软件&#x…

Bag of Tricks for Efficient Text Classification(FastText)

主要的有点就是快&#xff0c;用途就是用于文本分类&#xff0c;模型结构如上&#xff0c;主要是通过embedding将文本转换成向量&#xff0c;然后进行mean-pooling&#xff0c;然后输入到hidden隐向量中&#xff0c;通过softmax输出多分类&#xff0c;损失函数是对数似然损失函…

将语义分割的标注mask转为目标检测的bbox

1. 语义分割标签 1.1 labelme工具 语义分割的标签是利用labelme工具进行标注的,标注的样式如下: 1.2 语义分割的标签样式 2. 转换语义分割的标注到目标检测的bbox 实现步骤 (1) 利用标注的json文件生成mask图片(2) 在mask图片中找到目标的bbox矩形框的左上角点和右下角点(…

062:mapboxGL通过jumpTo方式跳转到某位置

第062个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+mapbox中通过jumpTo方式跳转到某位置。 直接复制下面的 vue+mapbox源代码,操作2分钟即可运行实现效果 文章目录 示例效果配置方式示例源代码(共122行)相关API参考:专栏目标示例效果 配置方式 1)查看基础设置…