分类预测 | MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络数据分类预测

news/2024/11/15 8:19:33/

分类预测 | MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络数据分类预测

目录

    • 分类预测 | MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络数据分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.MATLAB实现SSA-CNN-LSTM数据分类预测,运行环境Matlab2021b及以上;
2.基于麻雀优化算法(SSA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的数据分类预测程序;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;SSA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络数据分类预测
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=SSA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          % Relu 激活层lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  % 网络铺平层bilstmLayer(best_hd, "Name", "bilstm", "OutputMode","last")              % BiLSTM层fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层softmaxLayer("Name", "softmax")                                  % softmax激活层classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); %% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229


http://www.ppmy.cn/news/1167125.html

相关文章

Hadoop3教程(二十九):(生产调优篇)集群扩容及缩容(白名单与黑名单)

文章目录 (150)添加白名单(151)服役新服务器(152)服务器间数据均衡(153)黑名单退役服务器参考文献 这一章还算是比较重要的。 (150)添加白名单 白名单&#…

PHP基础学习

PHP是什么? PHP(全称:PHP:Hypertext Preprocessor,即"PHP:超文本预处理器")是一种通用开源脚本语言。PHP 脚本在服务器上执行。PHP 可免费下载使用。 基础的PHP语法 PHP 脚本可以放…

SparkStreaming入门

概述 实时/离线 实时:Spark是每个3秒或者5秒更新一下处理后的数据,这个是按照时间切分的伪实时。真正的实时是根据事件触发的数据计算,处理精度达到ms级别。离线:数据是落盘后再处理,一般处理的数据是昨天的数据&…

ssm351校园服务平台管理系统+jsp

项目名称:ssm351校园服务平台管理系统jsp 点击这里进入源码目录 声明: 适用范围: 本文档适用于广泛的学术和教育用途,包括但不限于个人学习、毕业设计和课程设计。免责声明: 特此声明,本文仅供参考学习之用…

基于Java的图书馆借阅管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序(小蔡coding) 代码参考数据库参考源码获取 前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者&am…

【茫茫架构路】1. Class File字节码文件解析

本文所有内容的JDK版本为 OpenJDK 11 JDK11 Class File官方说明。 Java解析字节码文件源码参考,以下为部分字节码解析源码展示。 public ClassFile(DataInputStream in) {try {//magic: 0xCAFEBABEthis.magic ClassReader.readInt(in);System.out.println("m…

npm或pnpm终端执行失败问题

问题描述: npm或pnpm终端执行失败问题:有时候在编译器中通过包管理工具进行某些命令操作时,会提示如下报错 pnpm : 无法加载文件 E:\1AllLearnSource\nvm\node\pnpm.ps1,因为在此系统上禁止运行脚本。有关详细信息,…

[论文笔记]GPT-1

引言 今天带来论文Improving Language Understanding by Generative Pre-Training的笔记,它的中文题目为:通过生成式预训练改进语言理解。其实就是GPT的论文。 自然语言理解可以应用于大量NLP任务上,比如文本蕴含、问答、语义相似和文档分类。虽然无标签文本语料是丰富的,…