c++视觉处理---霍夫变换

news/2024/12/2 13:26:05/

霍夫直线变换的函数

HoughLines 是OpenCV库中用于执行霍夫直线变换的函数。霍夫直线变换用于检测图像中的直线。下面是该函数的基本用法:

cv::HoughLines(image, lines, rho, theta, threshold);
  • image: 输入的二值图像,通常是通过边缘检测算法生成的。
  • lines: 存储检测到的直线的容器。
  • rho: 霍夫空间中的距离分辨率。通常设置为像素。
  • theta: 霍夫空间中的角度分辨率。通常设置为弧度。
  • threshold: 用于判断直线是否检测成功的阈值。只有当投票数大于等于此阈值时,才会被认为检测到一条直线。

cv::HoughLines 函数将在输入图像上执行霍夫直线变换,识别直线,并将检测到的直线的参数 (ρ, θ) 存储在 lines 容器中。每个检测到的直线都由 (ρ, θ) 表示,其中 ρ 是距离原点的距离,θ 是直线的角度。您可以在 lines 容器中访问这些参数。

以下是一个使用 cv::HoughLines 的简单示例:

#include <opencv2/opencv.hpp>
#include <iostream>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>using namespace std;
using namespace cv;
#include <fstream>
using namespace cv; //包含cv命名空间
#include <opencv2/core/core.hpp>//----------------- 【main()函数】--------------------------
// 描述: 控制台应用程序的入口函数, 我们的程序从这里开始
//
int main()
{//【1】载入原始图和 Mat变量定义Mat srcImage = imread("113.jpg"); //工程目录下应该有一张名为1. jpg的素材图Mat midImage, dstImage;//临时变量和目标图的定义//【2】进行边缘检测和转化为灰度图Canny(srcImage, midImage, 50, 200, 3);//进行一此 canny边缘检测cvtColor(midImage, dstImage, CV_GRAY2BGR);//转化边缘检测后的图为灰度图//【3】进行霍夫线变换vector<Vec2f> lines;//定义一个矢量结构lines用于存放得到的线段矢量集合HoughLines(midImage, lines, 1, CV_PI/180, 150, 0, 0 );//【4】依次在图中绘制出每条线段for (size_t i = 0; i < lines.size(); i++){float rho = lines[i][0], theta = lines[i][1];Point pt1, pt2;double a = cos(theta), b = sin(theta);double x0 = a * rho, y0 = b * rho;pt1.x = cvRound(x0 + 1000 * (-b));pt1.y = cvRound(y0 + 1000 * (a));pt2.x = cvRound(x0 - 1000 * (-b));pt2.y = cvRound(y0 - 1000 * (a));//此句代码的OpenCV2版为://line( dstImage, pt1, pt2, Scalar(55,100,195), 1, CV_AA);//此句代码的 OpenCV3版为:line(dstImage, pt1, pt2, Scalar(55, 100, 195), 1, LINE_AA);}//【5】显示原始图imshow("【原始图】", srcImage);//【6】边缘检测后的图imshow("【边缘检测后的图】", midImage);//【7】显示效果图imshow("【效果图】", dstImage);waitKey(0);return 0;
}

在这里插入图片描述

累计概率霍夫变换: HoughLinesP()函数

cv::HoughLinesP 是OpenCV库中用于执行概率霍夫直线变换(Probabilistic Hough Line Transform)的函数。概率霍夫直线变换与传统霍夫直线变换不同,它不需要计算每个像素的直线参数 (ρ, θ),而是通过连接边缘点的局部段来检测线段。这可以显著提高速度,特别是在处理大型图像时。

以下是 cv::HoughLinesP 函数的基本用法:

cv::HoughLinesP(image, lines, rho, theta, threshold, minLineLength, maxLineGap);
  • image: 输入的二值图像,通常是通过边缘检测算法生成的。
  • lines: 存储检测到的直线段的容器。
  • rho: 霍夫空间中的距离分辨率。通常设置为像素。
  • theta: 霍夫空间中的角度分辨率。通常设置为弧度。
  • threshold: 用于判断线段是否检测成功的阈值。只有当线段上的点数大于等于此阈值时,才会被接受。
  • minLineLength: 最小线段长度。任何短于此长度的线段都会被忽略。
  • maxLineGap: 允许将同一线段的两个线段断开的最大距离。

cv::HoughLinesP 函数将在输入图像上执行概率霍夫直线变换,识别线段,并将检测到的线段的起始点和终止点存储在 lines 容器中。

以下是一个简单的示例,演示如何使用 cv::HoughLinesP 检测线段:

#include <opencv2/opencv.hpp>
#include <iostream>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>using namespace std;
using namespace cv;
#include <iostream>
#include <fstream>
using namespace cv; //包含cv命名空间
#include <opencv2/core/core.hpp>
//--【main()函数】 -//- -------- ---- -------------
// 描述: 控制台应用程序的入口函数, 我们的程序从这里开始
//.
int main()
{//【1】载入原始图和Mat变量定义Mat srcImage = imread("113.jpg"); //工程目录下应该有一张名为1. jpg的素材图Mat midImage, dstImage;//临时变量和目标图的定义//【2】进行边缘检测和转化为灰度图Canny(srcImage, midImage, 50, 200, 3);//进行一此 canny边缘检测cvtColor(midImage, dstImage, COLOR_GRAY2BGR);//转化边缘检测后的图为灰度图//【3】进行霍夫线变换vector<Vec4i> lines;//定义一个矢量结构lines用于存放得到的线段矢量集合HoughLinesP(midImage, lines, 1, CV_PI/180, 80, 50, 10 );//【4】依次在图中绘制出每条线段for (size_t i = 0; i < lines.size(); i++){Vec4i l = lines[i];line(dstImage, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(186, 88, 255), 1, LINE_AA);//此句代码的OpenCV2版为://line( dstImage, Point(1[0], 1[1]), Point(1[2], 1[3]),Scalar(186,88,255), 1, CV_AA);//此句代码的OpenCV3版为:}//【5】显示原始图imshow("【原始图】", srcImage);//【6】边缘检测后的图imshow("【边缘检测后的图】", midImage);//【7】显示效果图imshow("【效果图】", dstImage);waitKey(0);return 0;
}

这个示例加载了经过边缘检测的图像,然后使用 cv::HoughLinesP 函数检测线段,并在图像上绘制检测到的线段。请确保在 cv::HoughLinesP 函数中适当调整距离分辨率、角度分辨率、阈值、最小线段长度和最大线段断开距离以获得最佳的结果。
在这里插入图片描述

霍夫圆变换的函数:cv::HoughCircles

cv::HoughCircles 是OpenCV库中用于执行霍夫圆变换的函数。霍夫圆变换用于检测图像中的圆。以下是 cv::HoughCircles 函数的基本用法:

cv::HoughCircles(image, circles, cv::HOUGH_GRADIENT, dp, minDist, param1, param2, minRadius, maxRadius);
  • image: 输入的灰度图像,通常是通过边缘检测和预处理生成的。
  • circles: 存储检测到的圆的容器。
  • method: 用于检测圆的方法,通常使用 cv::HOUGH_GRADIENT
  • dp: 累加器分辨率与图像分辨率的比例。通常设置为1。
  • minDist: 检测到的圆之间的最小距离。
  • param1: Canny边缘检测的高阈值。
  • param2: 累加器阈值,用于确定检测到的圆。
  • minRadius: 允许的最小圆半径。
  • maxRadius: 允许的最大圆半径。

cv::HoughCircles 函数将在输入图像上执行霍夫圆变换,识别圆,并将检测到的圆的圆心坐标和半径存储在 circles 容器中。

以下是一个简单的示例,演示如何使用 cv::HoughCircles 检测圆:

#include <opencv2/opencv.hpp>
#include <iostream>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>using namespace std;
using namespace cv;
#include <iostream>
#include <fstream>
using namespace cv; //包含cv命名空间
#include <opencv2/core/core.hpp>
//----【main()函数】------ -------- -
// 描述: 控制台应用程序的入口函数, 我们的程序从这里开始
int main()
{//【1】载入原始图、Mat 变量定义Mat srcImage = imread("2144.jpg"); //工程目录下应该有一张名为1. jpg的素材图Mat midImage, dstImage;//临时变量和目标图的定义//【2】显示原始图imshow("【原始图】", srcImage);//【3】转为灰度图并进行图像平滑cvtColor(srcImage, midImage, COLOR_BGR2GRAY);//转化边缘检测后的图为灰度图GaussianBlur(midImage, midImage, Size(9, 9), 2, 2);//【4】进行霍夫圆变换vector<Vec3f> circles;HoughCircles(midImage, circles, HOUGH_GRADIENT, 1.5, 10, 200, 100, 0, 0);//【5】依次在图中绘制出圆for (size_t i = 0; i < circles.size(); i++){//参数定义Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));int radius = cvRound(circles[i][2]);//绘制圆心circle(srcImage, center, 3, Scalar(0, 255, 0), -1, 8, 0);//绘制圆轮廓circle(srcImage, center, radius, Scalar(155, 50, 255), 3, 8, 0);}//【6】显示效果图imshow("【效果图】", srcImage);waitKey(0);return 0;
}

http://www.ppmy.cn/news/1149932.html

相关文章

【C语言数据结构】图-邻接矩阵法

图-邻接矩阵法 代码实现 代码实现 #include<stdio.h> #include<stdlib.h> #include<stdbool.h>//定义最大顶点数为100&#xff0c;也就是这个图里最多有100个顶点 #define MaxVertexNum 100//给顶点类型设置为char(其实本质是给char取了个别名叫VertexType)…

OCP Java17 SE Developers 复习题04

答案 F. Line 5 does not compile. This question is checking to see whether you are paying attention to the types. numFish is an int, and 1 is an int. Therefore, we use numeric addition and get 5. The problem is that we cant store an int in a String variab…

【数学】Monocarp and the Set—CF1886D

Monocarp and the Set—CF1886D 参考文章 思路 我们把添加数字的过程倒过来看&#xff0c;也就是对长度为 n n n 的数组一个一个删除数字。那么 ′ > ′ > ′>′、 ′ < ′ < ′<′、 ′ ? ′ ? ′?′ 就分别代表“删除最大的数字”、“删除最小的数字…

Leetcode.2867 统计树中的合法路径数目

题目链接 Leetcode.2867 统计树中的合法路径数目 rating : 2428 题目描述 给你一棵 n n n 个节点的无向树&#xff0c;节点编号为 1 1 1 到 n n n 。给你一个整数 n n n 和一个长度为 n − 1 n - 1 n−1 的二维整数数组 e d g e s edges edges &#xff0c;其中 e d g …

同创永益成为英迈首家签约生态伙伴

日前&#xff0c;同创永益已和英迈签署生态运营战略协议&#xff0c;并正式成为英迈全新打造的GTM生态圈的首位签约合作伙伴。双方将携手对“同创数字韧性平台”产品进行一站式联合解决方案的持续整合&#xff0c;并将大力推动该联合解决方案在市场上的进一步拓展。 云原生时代…

在服务器上解压.7z文件

1. 更新apt sudo apt-get update2. 安装p7zip sudo apt-get install p7zip-full3. 解压.7z文件 7za x WN18RR.7z

免费使用Salesforce Data Cloud!详细操作步骤来啦

Data Cloud是Salesforce向市场推出的增长最快的产品&#xff0c;这对Salesforce来说是一个重要竞争优势。 近期&#xff0c;Salesforce宣布客户可以免费使用Data Cloud。这就是所谓的零美元SKU&#xff0c;换句话说&#xff0c;这是一条不会产生任何成本的Salesforce产品线。 …

AI人工智能入门之图像识别

人工智能&#xff08;Artificial Intelligence&#xff0c;简称AI&#xff09;是一门涵盖多个领域的科学技术&#xff0c;旨在使计算机能够模拟人类智能。 其中一个热门的应用领域就是图像识别。 图像识别是指计算机通过对一幅图像进行分析和处理&#xff0c;来识别和理解图像…