漏斗模型示例:
不同的业务场景有不同的业务路径 : 有先后顺序, 事件可以出现多次
注册转化漏斗 : 启动APP --> APP注册页面--->注册结果 -->提交订单-->支付成功
搜购转化漏斗 : 搜索商品--> 点击商品--->加入购物车-->提交订单-->支付成功
秒杀活动选购转化漏斗: 点击秒杀活动-->参加活动--->参与秒杀-->秒杀成功--->成功支付
电商的购买转化漏斗模型图:
处理步骤 :
明确漏斗名称:购买转化漏斗
起始事件:浏览了商品的详情页
目标事件:支付
业务流程事件链路:详情页->购物车->下单页->支付
[事件之间有没有时间间隔要求 , 链路中相邻的两个事件是否可以有其他事件]
需求:求购买转化漏斗模型的转换率(事件和事件之间没有时间间隔要求,并且相邻两个事件可以去干其他的事)
1.每一个步骤的uv
2.相对的转换率(下一个步骤的uv/上一个步骤的UV),绝对的转换率(当前步骤的UV第一步骤的UV)关心的事件:e1,e2,e4,e5 ==> 先后顺序不能乱-- 准备数据
user_id event_id event_action event_time
u001,e1,view_detail_page,2022-11-01 01:10:21
u001,e2,add_bag_page,2022-11-01 01:11:13
u001,e3,collect_goods_page,2022-11-01 02:07:11
u002,e3,collect_goods_page,2022-11-01 01:10:21
u002,e4,order_detail_page,2022-11-01 01:11:13
u002,e5,pay_detail_page,2022-11-01 02:07:11
u002,e6,click_adver_page,2022-11-01 13:07:23
u002,e7,home_page,2022-11-01 08:18:12
u002,e8,list_detail_page,2022-11-01 23:34:29
u002,e1,view_detail_page,2022-11-01 11:25:32
u002,e2,add_bag_page,2022-11-01 12:41:21
u002,e3,collect_goods_page,2022-11-01 16:21:15
u002,e4,order_detail_page,2022-11-01 21:41:12
u003,e5,pay_detail_page,2022-11-01 01:10:21
u003,e6,click_adver_page,2022-11-01 01:11:13
u003,e7,home_page,2022-11-01 02:07:11
u001,e4,order_detail_page,2022-11-01 13:07:23
u001,e5,pay_detail_page,2022-11-01 08:18:12
u001,e6,click_adver_page,2022-11-01 23:34:29
u001,e7,home_page,2022-11-01 11:25:32
u001,e8,list_detail_page,2022-11-01 12:41:21
u001,e1,view_detail_page,2022-11-01 16:21:15
u001,e2,add_bag_page,2022-11-01 21:41:12
u003,e8,list_detail_page,2022-11-01 13:07:23
u003,e1,view_detail_page,2022-11-01 08:18:12
u003,e2,add_bag_page,2022-11-01 23:34:29
u003,e3,collect_goods_page,2022-11-01 11:25:32
u003,e4,order_detail_page,2022-11-01 12:41:21
u003,e5,pay_detail_page,2022-11-01 16:21:15
u003,e6,click_adver_page,2022-11-01 21:41:12
u004,e7,home_page,2022-11-01 01:10:21
u004,e8,list_detail_page,2022-11-01 01:11:13
u004,e1,view_detail_page,2022-11-01 02:07:11
u004,e2,add_bag_page,2022-11-01 13:07:23
u004,e3,collect_goods_page,2022-11-01 08:18:12
u004,e4,order_detail_page,2022-11-01 23:34:29
u004,e5,pay_detail_page,2022-11-01 11:25:32
u004,e6,click_adver_page,2022-11-01 12:41:21
u004,e7,home_page,2022-11-01 16:21:15
u004,e8,list_detail_page,2022-11-01 21:41:12
u005,e1,view_detail_page,2022-11-01 01:10:21
u005,e2,add_bag_page,2022-11-01 01:11:13
u005,e3,collect_goods_page,2022-11-01 02:07:11
u005,e4,order_detail_page,2022-11-01 13:07:23
u005,e5,pay_detail_page,2022-11-01 08:18:12
u005,e6,click_adver_page,2022-11-01 23:34:29
u005,e7,home_page,2022-11-01 11:25:32
u005,e8,list_detail_page,2022-11-01 12:41:21
u005,e1,view_detail_page,2022-11-01 16:21:15
u005,e2,add_bag_page,2022-11-01 21:41:12
u005,e3,collect_goods_page,2022-11-01 01:10:21
u006,e4,order_detail_page,2022-11-01 01:11:13
u006,e5,pay_detail_page,2022-11-01 02:07:11
u006,e6,click_adver_page,2022-11-01 13:07:23
u006,e7,home_page,2022-11-01 08:18:12
u006,e8,list_detail_page,2022-11-01 23:34:29
u006,e1,view_detail_page,2022-11-01 11:25:32
u006,e2,add_bag_page,2022-11-01 12:41:21
u006,e3,collect_goods_page,2022-11-01 16:21:15
u006,e4,order_detail_page,2022-11-01 21:41:12
u006,e5,pay_detail_page,2022-11-01 23:10:21
u006,e6,click_adver_page,2022-11-01 01:11:13
u007,e7,home_page,2022-11-01 02:07:11
u007,e8,list_detail_page,2022-11-01 13:07:23
u007,e1,view_detail_page,2022-11-01 08:18:12
u007,e2,add_bag_page,2022-11-01 23:34:29
u007,e3,collect_goods_page,2022-11-01 11:25:32
u007,e4,order_detail_page,2022-11-01 12:41:21
u007,e5,pay_detail_page,2022-11-01 16:21:15
u007,e6,click_adver_page,2022-11-01 21:41:12
u007,e7,home_page,2022-11-01 01:10:21
u008,e8,list_detail_page,2022-11-01 01:11:13
u008,e1,view_detail_page,2022-11-01 02:07:11
u008,e2,add_bag_page,2022-11-01 13:07:23
u008,e3,collect_goods_page,2022-11-01 08:18:12
u008,e4,order_detail_page,2022-11-01 23:34:29
u008,e5,pay_detail_page,2022-11-01 11:25:32
u008,e6,click_adver_page,2022-11-01 12:41:21
u008,e7,home_page,2022-11-01 16:21:15
u008,e8,list_detail_page,2022-11-01 21:41:12
u008,e1,view_detail_page,2022-11-01 01:10:21
u009,e2,add_bag_page,2022-11-01 01:11:13
u009,e3,collect_goods_page,2022-11-01 02:07:11
u009,e4,order_detail_page,2022-11-01 13:07:23
u009,e5,pay_detail_page,2022-11-01 08:18:12
u009,e6,click_adver_page,2022-11-01 23:34:29
u009,e7,home_page,2022-11-01 11:25:32
u009,e8,list_detail_page,2022-11-01 12:41:21
u009,e1,view_detail_page,2022-11-01 16:21:15
u009,e2,add_bag_page,2022-11-01 21:41:12
u009,e3,collect_goods_page,2022-11-01 01:10:21
u010,e4,order_detail_page,2022-11-01 01:11:13
u010,e5,pay_detail_page,2022-11-01 02:07:11
u010,e6,click_adver_page,2022-11-01 13:07:23
u010,e7,home_page,2022-11-01 08:18:12
u010,e8,list_detail_page,2022-11-01 23:34:29
u010,e5,pay_detail_page,2022-11-01 11:25:32
u010,e6,click_adver_page,2022-11-01 12:41:21
u010,e7,home_page,2022-11-01 16:21:15
u010,e8,list_detail_page,2022-11-01 21:41:12-- 创建表
drop table if exists event_info_log;
create table event_info_log
(
user_id varchar(20),
event_id varchar(20),
event_action varchar(20),
event_time datetime
)
DUPLICATE KEY(user_id)
DISTRIBUTED BY HASH(user_id) BUCKETS 1;-- 通过本地文件的方式导入数据
curl \-u root: \-H "label:event_info_log" \-H "column_separator:," \-T /root/data/event_log.txt \http://linux01:8040/api/test/event_info_log/_stream_load
逻辑分析:
1. 先将用户的事件序列,按照漏斗模型定义的条件进行过滤,留下满足条件的事件
2. 将同一个人的满足条件的事件ID收集到数组,按时间先后排序,拼接成字符串
3. 将拼接好的字符串,匹配漏斗模型抽象出来的正则表达式
方法一:
--1. 先将用户的事件序列,按照漏斗模型定义的条件进行过滤,留下满足条件的事件
--2. 将同一个人的满足条件的事件ID收集到数组,按时间先后排序,拼接成字符串
--3. 将拼接好的字符串,匹配漏斗模型抽象出来的正则表达式1.筛选时间条件,确定每个人的事件序列
select
user_id,
max(event_ll) as event_seq
from
(
select
user_id,
group_concat(event_id)over(partition by user_id order by report_date) as event_ll
from
(select user_id,event_id,report_datefrom event_info_logwhere event_id in ('e1','e2','e4','e5')and to_date(report_date) = '2022-11-01'order by user_id,report_date
) as temp
) as temp2
group by user_id;+---------+------------------------+
| user_id | event_ll |
+---------+------------------------+
| u006 | e4, e5, e1, e2, e4, e5 |
| u007 | e1, e4, e5, e2 |
| u005 | e1, e2, e5, e4, e1, e2 |
| u004 | e1, e5, e2, e4 |
| u010 | e4, e5, e5 |
| u001 | e1, e2, e5, e4, e1, e2 |
| u003 | e5, e1, e4, e5, e2 |
| u002 | e4, e5, e1, e2, e4 |
| u008 | e1, e1, e5, e2, e4 |
| u009 | e2, e5, e4, e1, e2 |
+---------+------------------------+2.确定匹配规则模型
selectuser_id,'购买转化漏斗' as funnel_name ,case-- 正则匹配,先触发过e1,在触发过e2,在触发过e4,在触发过e5when event_seq rlike('e1.*e2.*e4.*e5') then 4-- 正则匹配,先触发过e1,在触发过e2,在触发过e4when event_seq rlike('e1.*e2.*e4') then 3-- 正则匹配,先触发过e1,在触发过e2when event_seq rlike('e1.*e2') then 2-- 正则匹配,只触发过e1when event_seq rlike('e1') then 1else 0 end step
from
(select
user_id,
max(event_ll) as event_seq
from
(
select
user_id,
group_concat(event_id)over(partition by user_id order by report_date) as event_ll
from
(select user_id,event_id,report_datefrom event_info_logwhere event_id in ('e1','e2','e4','e5')and to_date(report_date) = '2022-11-01'order by user_id,report_date
) as temp
) as temp2
group by user_id
) as tmp3;+---------+--------------------+------+
| user_id | funnel_name | step |
+---------+--------------------+------+
| u006 | 购买转化漏斗 | 4 |
| u007 | 购买转化漏斗 | 2 |
| u005 | 购买转化漏斗 | 3 |
| u004 | 购买转化漏斗 | 3 |
| u010 | 购买转化漏斗 | 0 |
| u001 | 购买转化漏斗 | 3 |
| u003 | 购买转化漏斗 | 2 |
| u002 | 购买转化漏斗 | 3 |
| u008 | 购买转化漏斗 | 3 |
| u009 | 购买转化漏斗 | 2 |
+---------+--------------------+------+-- 最后计算转换率
select funnel_name,sum(if(step >= 1 ,1,0)) as step1,sum(if(step >= 2 ,1,0)) as step2,sum(if(step >= 3 ,1,0)) as step3,sum(if(step >= 4 ,1,0)) as step4,round(sum(if(step >= 2 ,1,0))/sum(if(step >= 1 ,1,0)),2) as 'step1->step2_radio',round(sum(if(step >= 3 ,1,0))/sum(if(step >= 2 ,1,0)),2) as 'step2->step3_radio',round(sum(if(step >= 4 ,1,0))/sum(if(step >= 3 ,1,0)),2) as 'step3->step4_radio'
from
(select'购买转化漏斗' as funnel_name ,case-- 正则匹配,先触发过e1,在触发过e2,在触发过e4,在触发过e5when event_seq regexp('e1.*e2.*e4.*e5') then 4-- 正则匹配,先触发过e1,在触发过e2,在触发过e4when event_seq regexp('e1.*e2.*.*e4') then 3-- 正则匹配,先触发过e1,在触发过e2when event_seq regexp('e1.*e2') then 2-- 正则匹配,只触发过e1when event_seq regexp('e1') then 1else 0 end stepfrom (select user_id,max(event_seq) as event_seq from -- 因为在doris1.1版本中还不支持数组,所以拼接字符串的时候还没办法排序(select user_id,-- 用开窗的方式进行排序,然后在有序的按照时间升序,将事件拼接group_concat(concat(report_date,'_',event_id),'|')over(partition by user_id order by report_date) as event_seqfrom event_info_log where to_date(report_date) = '2022-11-01'and event_id in('e1','e4','e5','e2')) as tmp group by user_id) as t1
) as t2
group by funnel_name;+--------------------+-------+-------+-------+-------+--------------------+--------------------+--------------------+
| funnel_name | step1 | step2 | step3 | step4 | step1->step2_radio | step2->step3_radio | step3->step4_radio |
+--------------------+-------+-------+-------+-------+--------------------+--------------------+--------------------+
| 购买转化漏斗 | 9 | 9 | 6 | 1 | 1 | 0.67 | 0.17 |
+--------------------+-------+-------+-------+-------+--------------------+--------------------+--------------------+
方法二:
1.按照时间排序,将所有事件全部拿出来,拼成一个字符串selectuser_id,max(sz)eventhingfrom(selectuser_id,group_concat(event_id)over(partition by user_id order by event_time asc)szfromevent_info_log)t1group by user_id;+---------+--------------------------------------------+
| user_id | eventhing |
+---------+--------------------------------------------+
| u006 | e6, e4, e5, e7, e1, e2, e6, e3, e4, e5, e8 |
| u007 | e7, e7, e1, e3, e4, e8, e5, e6, e2 |
| u005 | e1, e3, e2, e3, e5, e7, e8, e4, e1, e2, e6 |
| u004 | e7, e8, e1, e3, e5, e6, e2, e7, e8, e4 |
| u010 | e4, e5, e7, e5, e6, e6, e7, e8, e8 |
| u001 | e1, e2, e3, e5, e7, e8, e4, e1, e2, e6 |
| u003 | e5, e6, e7, e1, e3, e4, e8, e5, e6, e2 |
| u002 | e3, e4, e5, e7, e1, e2, e6, e3, e4, e8 |
| u008 | e1, e8, e1, e3, e5, e6, e2, e7, e8, e4 |
| u009 | e3, e2, e3, e5, e7, e8, e4, e1, e2, e6 |
+---------+--------------------------------------------+2.-- 正则匹配select"电商的漏斗模型" as funnel_name,sum(if(step>=1,1,0))as step1_uv,sum(if(step>=2,1,0))as step2_uv,sum(if(step>=3,1,0))as step2_uv,sum(if(step>=4,1,0))as step2_uvfrom(selectuser_id,case when eventhing rlike('e1.*e2.*e4.*e5') then 4when eventhing rlike('e1.*e2.*e4') then 3when eventhing rlike('e1.*e2') then 2when eventhing rlike('e1') then 1else 0 end as stepfrom(selectuser_id,max(sz)eventhingfrom(selectuser_id,group_concat(event_id)over(partition by user_id order by event_time asc)szfromevent_info_log)t1group by user_id)t2)t3