c++学习之string实现

news/2025/1/15 22:37:52/

字符串 - C++引用 (cplusplus.com)这里给出标准官方的string实现,可以看到设计还是较为复杂的,有成员函数,迭代器,修饰符,容量,元素访问,字符串操作等,将字符尽可能的需求都设计出来,我们这里实现string中比较常用且重要的。

成员变量

private:char* _str;size_t _size;size_t _capacity;
public:const static size_t npos;//声明一个npos 表示返回找不到的下标 或从-1的下一个开始寻找

目录

1.迭代器实现

2.成员函数

空构造

 有参构造

 拷贝构造

析构

 重载=

3.字符串操作

c_str

 find 

 substr

5.修饰符

push_back

 append

 operator+=

insert

 erase

6.容量

reserve

size

capacity

resize 

7.元素访问

重载下标引用操作符

8.运算符重载

重载<

重载==

重载<=

重载>

重载>=

重载!=

重载输入流

重载输出流


1.迭代器实现

这里我们实现了常量迭代器与正常的迭代器,反向迭代器并未实现。对于string这里的迭代器我们可以看到本质上是一个char *类型的指针,在某些地方可能不是指针,且它的用法也是与指针如出一撤。这里对于反向迭代器后面再实现。

    typedef char* iterator;//迭代器const typedef char* const_iterator;//常量迭代器iterator begin(){return _str;};iterator end(){return _str+_size;};const_iterator begin()const{return _str;};const_iterator end()const{return _str + _size;};

在这里, 我们将char*定义为一个新的类型,并且给出它的成员函数,也就是迭代器的各个位置,从而实现。利用迭代器我们可以对他进行遍历:

Mystring::iterator it = str1.begin();while (it != str1.end()){cout << *it ;++it;}//范围forfor (auto tmp : str1){cout << tmp ;}

 同时其实本质上范围for的底层就是利用迭代器实现的,编译器在遇到范围for这样的写法时就会将这一段代码替换成下面迭代器实现的这样的遍历。

2.成员函数

空构造

实际上并不需要实现,我们这里给出它的实现,是了解对于空字符串的构造函数,虽说是空字符串,但不可直接赋值nullptr,否则后面实例化对象调成员函数时就是解引用空指针,空字符串,故这里会报错,实际上实现会给几个字节空间,放\0

Mystring():_str(new char[1]),_capacity(0),_size(0){}

 有参构造

//有参构造Mystring(const char* str="") : _size(strlen(str)), _capacity(_size)//缺省值直接给"",不给"\0",原先就有\0{//注意这里的字符串利用深拷贝,且初始化顺序遵循声明顺序_str = new char[_capacity + 1];//多开一个给\0strcpy(_str, str);}

 拷贝构造

还是老问题,直接的赋值会造成两次析构,故这里需要进行深拷贝。

//拷贝构造//之前讲过,浅拷贝会析构两次,深拷贝解决Mystring(const Mystring& s){_str = new char[s._capacity + 1];memset(_str, 0, s._capacity);strcpy(_str, s._str);this->_size = s._size;this->_capacity = s._capacity;}

析构

释放及初始化

//析构~Mystring(){delete [] _str;_str = nullptr;_capacity = _size = 0;}

 重载=

// 赋值重载Mystring& operator=(const Mystring& s){if (*this != s){char* temp = new char[s._capacity+1];strcpy(temp, s._str);delete []_str;_str = temp;this->_size = s._size;this->_capacity = s._capacity;}return *this;}

 这里的赋值重载区分拷贝构造:

用现有对象初始化定义的对象---------拷贝构造

用现有对象赋值给现有对象------------赋值

3.字符串操作

这里实现几个比较重要的,常用的。

c_str

const char* c_str()const{return _str;}

 find 

这里给出了两种实现,字符寻找与字符串寻找

//寻找某个字符,返回其下标位置size_t find(char ch,size_t pos=0){for (size_t i = pos; i < _size; i++){if (ch == _str[i]){return i;}}return npos;//找不到,返回-1}//寻找某个字符串,返回其相同的个数size_t find(const char* ch, size_t pos = 0){//暴力匹配const char* tmp = strstr(_str+pos, ch);if (tmp!= nullptr){return tmp - _str;//指针相减,找到个数}else{return npos;}}

 substr

//从pos位置处取n个字符,或n到 nposMystring substr(size_t pos, size_t len=npos){assert(pos < _size);Mystring s;size_t end = pos + len;if (len == pos || len + pos >= _size){len = _size - len;end = _size;}s.reserve(len);for (size_t i = pos; i <pos+len; i++){s += _str[i];//这里利用重载后的+=,本质上就是尾插}return s;}

5.修饰符

push_back

//尾插字符void push_back(char ch){//尾插的操作很简单,但是要考虑到扩容的问题if (_size == _capacity){reserve(_capacity=0?4:_capacity * 2);//为了避免空间是0,扩容失败}_str[_size] = ch;++_size;_str[_size] = '\0';}

 append

//尾插字符串void append(const char*ch){size_t num = strlen(ch);if (num + _size > _capacity){reserve(num + _size);}strcpy(_str + _size, ch);_size += num;//注意这里直接运用strcpy拷贝过来,连同\0一起,之后变为新大小}

 operator+=

这里重载的+=是利用了尾插的实现,故也作为字符串修饰

也是两种实现,+=字符或字符串

Mystring& operator+=(const char ch){push_back(ch);return *this;}Mystring& operator+=(const char* ch){append(ch);return *this;}

insert

 也是有两种实现方式

注意注释的提示:若这里想要进行头插,此时end>=0。只有当end--到负数才停止,而size_t 无法去判断正负数,程序崩溃,解决方法,将类型转换为int ,或者修改后移顺序,_str[end] = _str[end-1];去掉条件=。

其次就是对于扩容需要考虑空间为0的情况。

//某个位置插入字符void insert(size_t pos,char ch){assert(pos < _size);if (_size == _capacity){reserve(_capacity = 0 ? 4 : _capacity * 2);//为了避免空间是0,扩容失败}int end = _size;//pos位置处后移while (end>=(int)pos){//后移_str[end + 1] = _str[end];--end;}//插入_str[pos] = ch;}//某个位置插入字符串void insert(size_t pos,char *ch){size_t len = strlen(ch);if (_size +len>_capacity){reserve(_capacity = 0 ? 4 : _capacity * 2);//为了避免空间是0,扩容失败}size_t end = _size;//pos位置处后移while (end >= pos){//后移_str[end + len] = _str[end];--end;}//插入strncpy(_str+pos, ch,len);_size += len;}

 erase

删除pos位置后的npos个字符,这里的npos给的是缺省值,再没参数的情况下为-1,也就是pos后的全部删除。

//删除void erase(size_t pos,size_t len= npos){assert(pos <= _size);if (len == npos || pos + len >= _size){_str[pos] = '\0';_size = pos;}else{size_t begin = pos + len;while (begin <= _size){_str[begin- len] = _str[begin ];++begin;}_size -= len;}}

6.容量

reserve

//扩容void reserve(size_t n){if (n > _size){char* tmp = new char[n + 1];//这里还是留一个\0位置strcpy(tmp, _str);delete[]_str;_str = tmp;_capacity = n;}}

size

//返回大小
size_t size()const{return _size;}

capacity

//返回容量
size_t capacity()const{return _capacity;}

resize 

//初始化大小为n,且可以赋值之后的void resize(size_t n,char c='\0'){if (n <= _size){//删除_str[n] = '\0';_size = n;}else{//扩容reserve(n);//初始化值while (_size < n){_str[_size] = c;_size++;}//末尾给\0_str[_size] = '\0';}}

7.元素访问

重载下标引用操作符

const char& operator[](int pos)const{assert(pos < _size);return _str[pos];}

8.运算符重载

对于这里的比较运算符,通过实现<与==,再取反实现> ,>=,!=.

重载<

bool operator<(const Mystring &s1){return strcmp(this->_str, s1._str) <0;}

重载==

bool operator==(const Mystring& s){return strcmp(this->_str, s._str) == 0;}

重载<=

bool operator<=(const Mystring& s){return *this < s || *this == s;//由于<与=已实现,直接用}

重载>

bool operator>(const Mystring& s){return !( *this <=s) ;//取反}

重载>=

bool operator>=(const Mystring& s){return !(*this < s);//取反}

重载!=

bool operator!=(const Mystring& s){return!(*this==s);}

重载输入流

//流插入
istream& operator>>(istream& in, Mystring& s)
{char ch;ch = in.get();//一个个拿字符,包括空格与\nwhile (ch != ' ' && ch != '\n'){s += ch;ch = in.get();}return in;
}

重载输出流

//流提取
ostream& operator<<(ostream& out, const Mystring& s)
{for (size_t i = 0; i < s.size(); i++){out << s[i];}return out;
}


http://www.ppmy.cn/news/1069916.html

相关文章

前端组件库造轮子——Tree组件开发教程

前端组件库造轮子——Tree组件开发教程 前言 本系列旨在记录前端组件库开发经验&#xff0c;我们的组件库项目目前已在Github开源&#xff0c;下面是项目的部分组件。文章会详细介绍一些造组件库轮子的技巧并且最后会给出完整的演示demo。 文章旨在总结经验&#xff0c;开源分…

npm stomp.js 的消息断连报警

stomp.js的新版本是可以支持MQ断连后&#xff0c;自动重连&#xff0c;但是如果是直接物理断网了&#xff0c;那久无论如何都没有办法重连&#xff0c;为了不影响业务&#xff0c;可以实现一个MQ断连后&#xff0c;重连三次&#xff0c;然后还是连不上的话&#xff0c;就启动告…

JVM知识点(二)

1、G1垃圾收集器 -XX:MaxGCPauseMillis10&#xff0c;G1的参数&#xff0c;表示在任意1s时间内&#xff0c;停顿时间不能超过10ms&#xff1b;G1将堆切分成很多小堆区&#xff08;Region&#xff09;&#xff0c;每一个Region可以是Eden、Survivor或Old区&#xff1b;这些区在…

使用 Amazon Lambda 进行无服务器计算:云架构中的一场革命

引言 十年前,无服务器架构还像是痴人说梦。不再如此了! 有了 Amazon Lambda,我们现在可以建构和运行应用程序而不需要考虑服务器。云供应商会无缝地处理所有服务器的供应、扩展和管理。我们只需要关注代码。 这为云部署带来了前所未有的敏捷性、自动化和优化。但是,要发挥它的…

Spring Boot框架以及它的优势

文章目录 介绍1. **简化配置**2. **快速启动**3. **自动配置**4. **集成第三方库和框架**5. **微服务支持**6. **内嵌式数据库支持**7. **健康监控和管理**8. **可插拔的开发工具**9. **丰富的社区和生态系统**10. **良好的测试支持&#xff1a;** 核心特性**1. 依赖注入&#…

Google Play商店优化排名因素之应用的评分评论

下载次数是应用程序受欢迎程度的指标&#xff0c;Google在对我们的应用程序进行排名时也会将其考虑在内。评级和评论会影响应用程序的转化率&#xff0c;因为许多用户在做出决定之前会根据平均评级或最近的评论来评估我们的应用程序。 1、评级的重要性。 如果我们的应用程序有…

Hive 服务管理脚本

#!/bin/bash HIVE_HOME/opt/software/hive-3.1.3 HIVE_LOG_HOME/opt/software/hive-3.1.3/logfunction checkLogDir {if [[ ! -e ${HIVE_LOG_HOME} ]]; thenecho "${HIVE_LOG_HOME} 目录不存在&#xff0c;正在创建。"mkdir -p ${HIVE_LOG_HOME}fi }function checkHi…

《Flink学习笔记》——第三章 Flink的部署模式

不同的应用场景&#xff0c;有时候对集群资源的分配和占用有不同的需求。所以Flink为各种场景提供了不同的部署模式。 3.1 部署模式&#xff08;作业角度/通用分类&#xff09; 根据集群的生命周期、资源的分配方式、main方法到底在哪里执行——客户端还是Client还是JobManage…