JVM知识点(二)

news/2025/1/16 1:03:00/

1、G1垃圾收集器

  • -XX:MaxGCPauseMillis=10,G1的参数,表示在任意1s时间内,停顿时间不能超过10ms;
  • G1将堆切分成很多小堆区(Region),每一个Region可以是Eden、Survivor或Old区;这些区在内存上不是连续存放的;
  • 每一块Region大小都是相同的,大小为1-32M,若Region对象存储不下,大小超过Region50%的对象,将会存放到Humongous Region;
  • -XX:G1HeapRegionSize,可以调整Region大小;
  • -XX:G1HeapWastePercent:可以调整GC回收的阈值,默认为5%;只有达到这个阈值,GC才会回收对象,避免GC花费大量时间,回收内存却比较少;

垃圾回收过程:

  • G1“年轻代对象回收”,即Minor GC,发生时机为Eden满;
  • 老年代垃圾收集,他是一个并发标记过程,会顺便清理一点对象;
  • 混合清理,会同时清除年轻代和老年代对象;

RSet:

  • RSet记录的其他Region对象应用本Region对象的关系,是一个hash结构,key为引用的Region的地址,value为应用本Region的对象卡页集合;
  • 有了该结构,回收对象时,不必堆整个堆内存对象进行扫描;
  • RSet占用空间较大,通常为5%;

2、高并发下估算和调优

(1)GC考量指标

  • 系统容量:机器上的资源容量,资源容量限制比较严格的系统,对他的优化会越明显;
  • 吞吐量:在一个时间段内完成多少事务操作;
  • 延迟:等待时间;如查询一条sql,返回数据所等待时间;

(2)选择垃圾收集器

  • 堆大小空间不是很大(如100MB),使用串行收集器效果最好,XX:+UseSerialGC;
  • 如果机器为单核CPU,选择串行收集器较好;
  • 如果应用为“吞吐优先”,并且堆停顿时间没有要求,使用并行收集器合适,XX:+UseParallelGC;
  • 如果应用对响应时间要求较高,使用G1,CMS,ZGC较为合适,-XX:+UseConcMarkSweepGC、-XX:+UseG1GC、-XX:+UseZGC ,但会额外使用资源处理;

(3)大流量应用特点

  • 对延迟非常敏感的应用,通常可以通过机器集群来解决;
  • 考量系统指标有:
    • TPS:每秒处理的事务数量;
    • AVG:平均响应时间;
    • TP:表示机器有多少请求响应时间小于x毫秒;如TP80,代表有80%的请求响应时间小于x毫秒;

(4)估算

假设高峰请求6w/s,共有10台机器,每个请求大小20k,则每台机器JVM的流量为120MB/s

(5)调优

  • 假设给JVM分配了5460MB空间,则年轻代占用空间为5460/3=1820MB,Eden区大小大约为1820/10*8=1456MB,按照上面估算的120MB/s的流量,大约12s需要发生一次Minor GC;
  • 每隔半小时,会发送一次Major GC,Survivor区大小为182MB,若幸存下来的对象大于Survivor区内存大小,则会将对象直接分配到Old区,这样导致垃圾存储时间更长,只有Old区满了才能清除;
  • 大部分对象存活时间短,在Eden区发生GC后,会回收大量对象,我们可以分配一半的空间给Eden区,通过配置-XX:+UseConcMarkSweepGC -Xmx5460M -Xms5460M -Xmn2730M,Eden区发生GC时间为2730/10*8/120=18s;
  • 调大年轻代,顺便调大幸村去,这样对象在年轻代存活时间越大;
  • 元空间在扩容时,会发生Full GC,默认大小为20MB,可以通过参数- -XX:MetaspaceSize=256M -XX:MaxMetaspaceSize=256M将其调大,减少发生Full GC;

3、OOM问题排查

(1)分析那个线程影响CPU

  1. 使用top命令查询占用CPU最多的线程,记录其pid,shitf+p可以按照CPU使用率进行排序;
  2. 使用 top -H -p <pid> 查看进程中哪个线程占用CPU最高,记录线程id;
  3. 将十进制是tid转换为16进制,printf %x <tid>;
  4. 将线程栈信息输入到文件,jstack <tid> > <tid.log>;
  5. 查看日志信息 less <tid.log>;

(2)内存泄漏

  • 内存溢出是结果,内存泄漏是一个原因;
  • 不再被使用的对象,没有被切断和GC root链接,会导致内存泄漏;
  • 使用hashmap缓存数据时,没有使用LRU等策略,导致hashmap数据量越来越多,最终导致内存泄漏;
  • 操作文件读写时,没有将close放入finally中,最终导致文件描述符越来越多,导致内存泄漏;

4、JMM

(1)JMM结构

  • 主存储器:所有实例对象存储的位置,实例所拥有的字段也存储在里面,是所有线程共享的;
  • 工作存储器:每个线程都有自己的工作存储器,工作存储器存储主存储器所必要的数据拷贝;
  • 线程无法直接对主存储器进行操作,只能通过主存进行通信;

(2)操作类型

  • read:作用于主内存,将共享变量从主内存传送到工作内存中;
  • load:作用于工作内存,将read中的值读取到的值放入工作内存的变量副本中;
  • store:作用于工作内存,将工作内存中的变量副本传送到主内存中;
  • write:作用于主内存中,将strore的值写入到主内存的共享变量中;
  • use:作用域工作内存,会将工作内存的值传递给执行引擎,每当虚拟机需要使用该变量,就会执行该操作;
  • assign:作用于工作内存,每当虚拟机遇到一个赋值指令,就会把执行引擎中获取的值赋值给工作内存中的变量;
  • lock:作用于主内存,将变量标记为线程独占状态;
  • unlock:作用于主内存,释放独占状态;

(3)三大特性

  • 原子性:JMM 保证了 read、load、assign、use、store 和 write 六个操作具有原子性,除了long、double,其余基本数据类型都是原子性的;
  • 可见性:一个线程修改了变量,会同步给主内存,赶在其他线程修改之前刷新主内存。使用volatile修饰变量,变量更新会立即同步到主内存中,其他线程修改该变量之前,需要到主内存中拉取变量更新到自己的工作内存;
  • 有序性:在线程中观察,可以发现操作是有序的,而在另外一个线程中观察,操作是无序的;java中有一些默认的happen-before:
    • 程序次序:一个线程内,按照代码顺序,写在前面的操作先行发生于写在后面的操作。
    • 监视器锁定:unLock 操作先行发生于后面对同一个锁的 lock 操作。
    • volatile:对一个变量的写操作先行发生于后面对这个变量的读操作。
    • 传递规则:如果操作 A 先行发生于操作 B,而操作 B 又先行发生于操作 C,则操作 A 先行发生于操作 C。
    • 线程启动:对线程 start() 的操作先行发生于线程内的任何操作。
    • 线程中断:对线程 interrupt() 的调用先行发生于线程代码中检测到中断事件的发生,可以通过 Thread.interrupted() 方法检测是否发生中断。
    • 线程终结规则:线程中的所有操作先行发生于检测到线程终止,可以通过 Thread.join()、Thread.isAlive() 的返回值检测线程是否已经终止。
    • 对象终结规则:一个对象的初始化完成先行发生于它的 finalize() 方法的开始。

(4)内存屏障

  • load-load barriers:指令前插入load Barriers,会使高速缓存直接失效,强制重新从主内存加载数据;如下:load1数据的加载会先于load2及后面的数据的加载
load1
LoadLoad
load2
  • load-store Barriers:load1数据的加载会先于store2及后面数据存储指令加载到主内存;
load1
LoadStore
store2
  • store-store Barriers:store1数据写入主内存,优先于store2及后面的数据写入主内存,使用store barriers,能让写入缓存的数据最快加载如主内存,让其他线程可见;
store1
StoreStore
store2
  • store-load Barriers:在load2及后续所有读取操作执行之前,保证store1写入对多有处理器都可见;开销最大,涵盖前三条;
store1
StoreLoad
load2

5、字节码看并发编程

(1)线程模型

  • 对于java虚拟机中,每一个java线程会对应一个轻量级进程LWP;
  • 轻量级线程是调用系统内核所提供的一套接口,实际上还需要调用内核线程KLT;
  • 具体的概念,如创建,同步等,需要进行系统调用;
  • 系统调用需要用户态和内核态进行切换,即上下文切换,开销较大;

(2)Synchronized字节码

  • 方法加上Synchronized关键字,字节码是在flag标志处加上同步标志;

  • 对对象使用synchronized,字节码是通过一套monitorenter,monitorexit来使用的

public class SynchronizedDemo {synchronized void m1() {System.out.println("m1");}final Object lock = new Object();void doLock() {synchronized (lock) {System.out.println("lock");}}
}

(3)对象内存布局

  • Mark Word:用来存储 hashCode、GC 分代年龄、锁类型标记、偏向锁线程 ID、CAS 锁指向线程 LockRecord 的指针等,synconized 锁的机制与这里密切相关;
  • Class Point:用于执行对象所对应的类元数据信息,JVM通过他直到对象属于哪个Class;
  • Instance Data:真正存储对象数据,如字段内容等;
  • Padding:对象字节必须为8倍数,该字段会自动填充到8倍数;

6、


http://www.ppmy.cn/news/1069913.html

相关文章

使用 Amazon Lambda 进行无服务器计算:云架构中的一场革命

引言 十年前,无服务器架构还像是痴人说梦。不再如此了! 有了 Amazon Lambda,我们现在可以建构和运行应用程序而不需要考虑服务器。云供应商会无缝地处理所有服务器的供应、扩展和管理。我们只需要关注代码。 这为云部署带来了前所未有的敏捷性、自动化和优化。但是,要发挥它的…

Spring Boot框架以及它的优势

文章目录 介绍1. **简化配置**2. **快速启动**3. **自动配置**4. **集成第三方库和框架**5. **微服务支持**6. **内嵌式数据库支持**7. **健康监控和管理**8. **可插拔的开发工具**9. **丰富的社区和生态系统**10. **良好的测试支持&#xff1a;** 核心特性**1. 依赖注入&#…

Google Play商店优化排名因素之应用的评分评论

下载次数是应用程序受欢迎程度的指标&#xff0c;Google在对我们的应用程序进行排名时也会将其考虑在内。评级和评论会影响应用程序的转化率&#xff0c;因为许多用户在做出决定之前会根据平均评级或最近的评论来评估我们的应用程序。 1、评级的重要性。 如果我们的应用程序有…

Hive 服务管理脚本

#!/bin/bash HIVE_HOME/opt/software/hive-3.1.3 HIVE_LOG_HOME/opt/software/hive-3.1.3/logfunction checkLogDir {if [[ ! -e ${HIVE_LOG_HOME} ]]; thenecho "${HIVE_LOG_HOME} 目录不存在&#xff0c;正在创建。"mkdir -p ${HIVE_LOG_HOME}fi }function checkHi…

《Flink学习笔记》——第三章 Flink的部署模式

不同的应用场景&#xff0c;有时候对集群资源的分配和占用有不同的需求。所以Flink为各种场景提供了不同的部署模式。 3.1 部署模式&#xff08;作业角度/通用分类&#xff09; 根据集群的生命周期、资源的分配方式、main方法到底在哪里执行——客户端还是Client还是JobManage…

java 观察者模式

观察者模式 观察者模式简介观察者模式的实现总结 观察者模式简介 观察者&#xff08;Observer&#xff09;模式的定义&#xff1a;指多个对象间存在一对多的依赖关系&#xff0c;当一个对象的状态发生改变时&#xff0c;所有依赖于它的对象都得到通知并被自动更新。这种模式有…

Linux 指令心法(二)`cd` 更改当前目录

文章目录 命令的概述和用途命令的用法命令行选项和参数的详细说明命令的示例命令的注意事项或提示 命令的概述和用途 cd 是 “Change Directory” 的缩写。这是一个 shell 内建命令&#xff0c;用于在 Linux 和 Unix 系统中改变当前工作目录。通过使用 cd 命令&#xff0c;用户…

vue2中使用wangEditor(JS引入)

本文讲的不是npm安装&#xff0c;是下载js本地引入哦~ 想了解vue2和vue3的npm安装的&#xff0c;去这里&#xff1a;用于 Vue React | wangEditor 为了防止内网无法使用&#xff0c;咱不用cdn引入&#xff0c;直接下载js放入本地使用。 第一步&#xff1a;下载wangEditor对应…