机器学习基础12-Pipeline实现自动化流程处理(基于印第安糖尿病Pima 数据集)

news/2025/2/12 2:12:06/

有一些标准的流程可以实现对机器学习问题的自动化处理,在 scikitlearn 中通过Pipeline来定义和自动化运行这些流程。本节就将介绍如何通过Pipeline实现自动化流程处理。

  • 如何通过Pipeline来最小化数据缺失。
  • 如何构建数据准备和生成模型的Pipeline。
  • 如何构建特征选择和生成模型的Pipeline。

机器学习的自动流程

在机器学习方面有一些可以采用的标准化流程,这些标准化流程是从共同的问题中提炼出来的,例如评估框架中的数据缺失等。在 scikit-learn中提供了自动化运行流程的工具——Pipeline。Pipeline 能够将从数据转换到评估模型的整个机器学习流程进行自动化处理。读者可以到scikit-learn的官方网站阅读关于Pipeline的章节,加深对Pipeline的理解。

数据准备和生成模型的Pipeline

在机器学习的实践中有一个很常见的错误,就是训练数据集与评估数据集之间的数据泄露,这会影响到评估的准确度。要想避免这个问题,需要有一个合适的方式把数据分离成训练数据集和评估数据集,这个过程被包含在数据的准备过程中。数据准备过程是很好的理解数据和算法关系的过程,举例来说,当对训练数据集做标准化和正态化处理来训练算法时,就应该理解并接受这同样要受评估数据集的影响。

Pipeline能够处理训练数据集与评估数据集之间的数据泄露问题,通常会在数据处理过程中对分离出的所有数据子集做同样的数据处理,如正态化处理。

下面将演示如何通过Pipeline来处理这个过程,共分为以下两个步
骤:
(1)正态化数据。
(2)训练一个线性判别分析模型。
在使用Pipeline进行流程化算法模型的评估过程中,采用10折交叉验证来分离数据集。

数据集下载

其代码如下:


import pandas as pd
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.linear_model import LogisticRegressionfrom sklearn.model_selection import cross_val_score, ShuffleSplit, KFold
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler#数据预处理
path = 'D:\down\\archive\\diabetes.csv'
data = pd.read_csv(path)#将数据转成数组
array = data.values
#分割数据,去掉最后一个标签
X = array[:, 0:8]Y = array[:, 8]
# 分割数据集
n_splits = 10# 随机数种子
seed = 7kfold = KFold(n_splits=n_splits, random_state=seed, shuffle=True)steps = []
steps.append(('Standardize', StandardScaler()))
steps.append(('lda',LinearDiscriminantAnalysis()))model = Pipeline(steps)result = cross_val_score(model, X, Y, cv=kfold)print("算法评估结果:%.3f (%.3f)" % (result.mean(), result.std()))

Pipeline的各个步骤,通过列表参数传递给Pipeline实例,并通过
Pipeline进行流程化处理过程。运行结果:

算法评估结果:0.767 (0.048)

特征选择和生成模型的Pipeline

特征选择也是一个容易受到数据泄露影响的过程。和数据准备一样,特征选择时也必须确保数据的稳固性,Pipeline 也提供了一个工具(FeatureUnion)来保证数据特征选择时数据的稳固性。下面是一个在数据选择过程中保持数据稳固性的例子。

这个过程包括以下四个步骤:
(1)通过主要成分分析进行特征选择。
(2)通过统计选择进行特征选择。
(3)特征集合。
(4)生成一个逻辑回归模型。

在本例中也采用10折交叉验证来分离训练数据集和评估数据集。

代码如下:


import pandas as pd
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.feature_selection import SelectKBest
from sklearn.linear_model import LogisticRegressionfrom sklearn.model_selection import cross_val_score, ShuffleSplit, KFold
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import StandardScaler#数据预处理
path = 'D:\down\\archive\\diabetes.csv'
data = pd.read_csv(path)#将数据转成数组
array = data.values
#分割数据,去掉最后一个标签
X = array[:, 0:8]Y = array[:, 8]
# 分割数据集
n_splits = 10# 随机数种子
seed = 7kfold = KFold(n_splits=n_splits, random_state=seed, shuffle=True)features = []
features.append(('PCA', PCA(n_components=3)))
#添加select_best
features.append(('select_best', SelectKBest(k=6)))steps = []
steps.append(('feature_union', FeatureUnion(features)))steps.append(('logistic', LogisticRegression()))model = Pipeline(steps)result = cross_val_score(model, X, Y, cv=kfold)print("算法评估结果:%.3f (%.3f)" % (result.mean(), result.std()))

运行结果:
此处先创建了FeatureUnion,然后将其作为Pipeline的一个生成步骤。

算法评估结果:0.771 (0.048)

本节学习了通过 scikit-learn 中的 Pipeline 进行自动流程化数据准备和特征选择的过程。接下来将探讨针对要处理的问题,如何提高机器学习算法的准确度。


http://www.ppmy.cn/news/1061461.html

相关文章

ISO-16750-1,2,3,4,5_2023 道路车辆 — 电气和电子设备的环境条件和测试 ,标准汇总

目录 一、ISO 16750标准各Part部分当前状态: ISO 16750-2023 合集1-5包下载:https://download.csdn.net/download/std7879/88251235 二、ISO 16750标准各Part部分描述的内容: ISO 16750-1:2023Part 1: General概述 ISO 16750-2:2023 Part…

Linux:Nginx服务与搭建

目录 一、Nginx概述 二、Nginx三大作用:反向代理、负载均衡、动静分离 三、Nginx和Apache 3.1Nginx和Apache的差异 3.2Nginx和Apache的优缺点比较 四、编译安装niginx 五、创建Nginx 自启动文件 六、Nginx的信号使用 6.1信号 七、升级 nginx1.18 nginx1.2…

MQ 简介-RabbitMQ

一. MQ 简介 消息队列作为高并发系统的核心组件之一,能够帮助业务系统结构提升开发效率和系统 稳定性,消息队列主要具有以下特点: 削峰填谷:主要解决瞬时写压力大于应用服务能力导致消息丢失、系统奔溃等问题系统解耦:解决不同重要程度、不…

设计模式之抽象工厂

文章目录 一、介绍二、基本组件三、演示案例1. 定义抽象工厂2. 定义抽象产品3. 定义具体工厂4. 定义具体产品5. 代码演示6. 代码改造 四、总结 一、介绍 抽象工厂模式(Abstract Factory Pattern)属于创建型设计模式。用于解决比工厂方法设计模式更加复杂的问题。 复杂到哪里了…

目标检测(Object Detection):Fast R-CNN,YOLO v3

目录 目标检测(Object Detection) R-CNN SPPNet Fast R-CNN YOLO v1 YOLO v2 YOLO v3 目标检测(Object Detection) 任务是计算机视觉中非常重要的基础问题,也是解决图像分割、目标跟踪、图像描述等问题的基础。目标检测是检测输入图像是否存在给定类别的物体…

ES常见错误总结

目录 报错信息 复盘 org.elasticsearch.index.query.QueryShardException:No mapping found for [xx] in order to sort on 报错信息 测试环境 org.elasticsearch.index.query.QueryShardException: No mapping found for [xx] in order to sort on 数据不存在的时候或者…

Unity3D Pico VR 手势识别

本文章使用的 Unity3D版本: 2021.3.6 , Pico SDK 230 ,Pico OS v.5.7.1 硬件Pico 4 Pico SDK可以去Pico官网下载SDK 导入SDK 第一步:创建Unity3D项目 第二步:导入 PICO Unity Integration SDK 选择 Windows > Package Manager。 在 Packag…

Java中LinkList的基本介绍和细节讨论。双向链表的代码和LinkList的源码。LinkList和ArrayList的比较与选择。

LinkedList 是 Java 中的一个双向链表实现的类,它实现了 List 接口,同时也实现了 Deque 接口,因此可以用作列表、队列或双端队列。下面是关于 LinkedList 的基本介绍和细节讨论: 基本介绍: LinkedList 是一个双向链表…