算法基础学习笔记——⑬高斯消元\组合计数\容斥原理

news/2024/11/29 2:48:00/

博主:命运之光
专栏:算法基础学习

在这里插入图片描述

目录

✨高斯消元

✨组合计数

🍓通过预处理逆元的方式求组合数:

🍓Lucas定理:

🍓分解质因数法求组合数:


前言:算法学习笔记记录日常分享,需要的看哈O(∩_∩)O,感谢大家的支持!


✨高斯消元

高斯消元(Gaussian Elimination)是一种用于解线性方程组的算法,通过逐步的行变换来将方程组转化为简化的行阶梯形式,从而求解方程组的解。

🍓以下是一个用C语言编写的高斯消元算法的示例代码:

#include <stdio.h>
#define N 3 // 方程个数和未知数个数
void gaussianElimination(float matrix[N][N + 1], float solution[N]) {int i, j, k;float factor;// 前向消元for (i = 0; i < N - 1; i++) {for (k = i + 1; k < N; k++) {factor = matrix[k][i] / matrix[i][i];for (j = i; j < N + 1; j++) {matrix[k][j] -= factor * matrix[i][j];}}}// 回代求解for (i = N - 1; i >= 0; i--) {solution[i] = matrix[i][N];for (j = i + 1; j < N; j++) {solution[i] -= matrix[i][j] * solution[j];}solution[i] /= matrix[i][i];}
}
int main() {float matrix[N][N + 1];float solution[N];int i, j;printf("Enter the augmented matrix:\n");for (i = 0; i < N; i++) {for (j = 0; j < N + 1; j++) {scanf("%f", &matrix[i][j]);}}gaussianElimination(matrix, solution);printf("Solution:\n");for (i = 0; i < N; i++) {printf("x%d = %.2f\n", i + 1, solution[i]);}return 0;
}

在上述代码中,我们定义了gaussianElimination函数来执行高斯消元算法。算法分为两个阶段:前向消元和回代求解。

前向消元阶段通过循环进行逐行消元操作,将方程组转化为行阶梯形式。首先,通过除以主对角线上的元素将当前行的主元素变为1。然后,通过逐行减去当前行的倍数,将当前列下方的元素变为0。

回代求解阶段从最后一行开始,通过回代计算未知数的值。首先,将当前行的右侧常数项赋值给对应的未知数。然后,逐列减去已知未知数的乘积,最后除以当前行的主元素。

在main函数中,我们首先接受用户输入的增广矩阵,其中最后一列为常数项。然后,调用gaussianElimination函数来解方程组,并将结果打印出来。

你可以运行上述代码,根据提示输入增广矩阵,程序将计算并输出方程组的解。


🍓高斯消元 :

// a[N][N]是增广矩阵
int gauss()
{int c, r;for (c = 0, r = 0; c < n; c ++ ){int t = r;for (int i = r; i < n; i ++ ) // 找到绝对值最大的行if (fabs(a[i][c]) > fabs(a[t][c]))t = i;if (fabs(a[t][c]) < eps) continue;for (int i = c; i <= n; i ++ ) swap(a[t][i], a[r][i]); // 将绝对值最大的行换到最顶端for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c]; // 将当前行的首位变成1for (int i = r + 1; i < n; i ++ ) // 用当前行将下面所有的列消成0if (fabs(a[i][c]) > eps)for (int j = n; j >= c; j -- )a[i][j] -= a[r][j] * a[i][c];r ++ ;}if (r < n){for (int i = r; i < n; i ++ )if (fabs(a[i][n]) > eps)return 2; // 无解return 1; // 有无穷多组解}for (int i = n - 1; i >= 0; i -- )for (int j = i + 1; j < n; j ++ )a[i][n] -= a[i][j] * a[j][n];return 0; // 有唯一解
}

✨组合计数

在C语言中,可以使用动态规划来实现组合计数(Combination Counting)。组合计数用于计算从n个元素中选择k个元素的组合数。

🍓以下是一个用C语言编写的组合计数算法的示例代码:

#include <stdio.h>
// 计算组合数C(n, k)
int combinationCount(int n, int k) {int C[n + 1][k + 1];int i, j;// 基本情况for (i = 0; i <= n; i++) {for (j = 0; j <= i && j <= k; j++) {if (j == 0 || j == i)C[i][j] = 1;elseC[i][j] = C[i - 1][j - 1] + C[i - 1][j];}}return C[n][k];
}
int main() {int n, k;printf("Enter the values of n and k: ");scanf("%d %d", &n, &k);int result = combinationCount(n, k);printf("Combination Count: %d\n", result);return 0;
}

在上述代码中,我们定义了一个combinationCount函数来计算组合数C(n, k)。算法使用动态规划的思想,使用一个二维数组C来存储中间结果。

首先,我们处理基本情况,即当k等于0或k等于n时,组合数C(n, k)为1。然后,通过递推关系C(n, k) = C(n-1, k-1) + C(n-1, k),我们填充C数组的其余元素。

在main函数中,我们接受用户输入的n和k的值,并调用combinationCount函数来计算组合数。然后,我们输出计算结果。

你可以运行上述代码,根据提示输入n和k的值,程序将计算并输出组合数C(n, k)的结果。

请注意,上述代码中的组合计数算法使用了动态规划的方法,对于较大的n和k可能会产生较大的中间结果。在实际应用中,可以使用更高效的算法或数学公式来计算组合数。


🍓递推法求组合数:

// c[a][b] 表示从a个苹果中选b个的方案数
for (int i = 0; i < N; i ++ )for (int j = 0; j <= i; j ++ )if (!j) c[i][j] = 1;else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;

🍓通过预处理逆元的方式求组合数:

首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]

如果取模的数是质数,可以用费马小定理求逆元

int qmi(int a, int k, int p) // 快速幂模板
{int res = 1;while (k){if (k & 1) res = (LL)res * a % p;a = (LL)a * a % p;k >>= 1;}return res;
}
// 预处理阶乘的余数和阶乘逆元的余数
fact[0] = infact[0] = 1;
for (int i = 1; i < N; i ++ )
{fact[i] = (LL)fact[i - 1] * i % mod;infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
}

🍓Lucas定理:

若p是质数,则对于任意整数 1 <= m <= n,有:

C(n, m) = C(n % p, m % p) * C(n / p, m / p) (mod p)

int qmi(int a, int k, int p) // 快速幂模板
{int res = 1 % p;while (k){if (k & 1) res = (LL)res * a % p;a = (LL)a * a % p;k >>= 1;}return res;
}
int C(int a, int b, int p) // 通过定理求组合数C(a, b)
{if (a < b) return 0;LL x = 1, y = 1; // x是分子,y是分母for (int i = a, j = 1; j <= b; i --, j ++ ){x = (LL)x * i % p;y = (LL) y * j % p;}return x * (LL)qmi(y, p - 2, p) % p;
}
int lucas(LL a, LL b, int p)
{if (a < p && b < p) return C(a, b, p);return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}

🍓分解质因数法求组合数:

当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用:

1. 筛法求出范围内的所有质数

2. 通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + ...

3. 用高精度乘法将所有质因子相乘

int primes[N], cnt; // 存储所有质数
int sum[N]; // 存储每个质数的次数
bool st[N]; // 存储每个数是否已被筛掉
void get_primes(int n) // 线性筛法求素数
{for (int i = 2; i <= n; i ++ ){if (!st[i]) primes[cnt ++ ] = i;for (int j = 0; primes[j] <= n / i; j ++ ){st[primes[j] * i] = true;if (i % primes[j] == 0) break;}}
}
int get(int n, int p) // 求n!中的次数
{int res = 0;while (n){res += n / p;n /= p;}return res;
}
vector<int> mul(vector<int> a, int b) // 高精度乘低精度模板
{vector<int> c;int t = 0;for (int i = 0; i < a.size(); i ++ ){t += a[i] * b;c.push_back(t % 10);t /= 10;}while (t){c.push_back(t % 10);t /= 10;}return c;
}
get_primes(a); // 预处理范围内的所有质数
for (int i = 0; i < cnt; i ++ ) // 求每个质因数的次数
{int p = primes[i];sum[i] = get(a, p) - get(b, p) - get(a - b, p);
}
vector<int> res;
res.push_back(1);
for (int i = 0; i < cnt; i ++ ) // 用高精度乘法将所有质因子相乘for (int j = 0; j < sum[i]; j ++ )res = mul(res, primes[i]);

✨容斥原理

在C语言中,可以使用容斥原理(Inclusion-Exclusion Principle)来解决一些计数问题。容斥原理是组合数学中的一个重要原理,用于计算多个集合的并集、交集等情况下的计数问题。

🍓以下是一个用C语言编写的容斥原理算法的示例代码:

#include <stdio.h>// 计算集合交集的大小
int intersectionSize(int set[], int setSize) {int result = set[0];for (int i = 1; i < setSize; i++) {result &= set[i];}return result;
}// 计算集合并集的大小
int unionSize(int set[], int setSize) {int result = set[0];for (int i = 1; i < setSize; i++) {result |= set[i];}return result;
}// 计算容斥原理的应用
int inclusionExclusion(int sets[][3], int numSets, int setSize) {int result = 0;for (int i = 1; i < (1 << numSets); i++) {int sign = (__builtin_popcount(i) % 2 == 1) ? 1 : -1;int tempSet[setSize];for (int j = 0; j < setSize; j++) {tempSet[j] = 0;}for (int j = 0; j < numSets; j++) {if (i & (1 << j)) {for (int k = 0; k < setSize; k++) {tempSet[k] |= sets[j][k];}}}int intersection = intersectionSize(tempSet, setSize);result += sign * intersection;}return result;
}int main() {int sets[3][3] = {{1, 2, 3},{2, 3, 4},{3, 4, 5}};int numSets = 3;int setSize = 3;int result = inclusionExclusion(sets, numSets, setSize);printf("Result: %d\n", result);return 0;
}

在上述代码中,我们定义了三个函数:intersectionSize用于计算集合交集的大小,unionSize用于计算集合并集的大小,inclusionExclusion用于应用容斥原理。

intersectionSize函数通过遍历集合元素并执行按位与操作来计算集合交集的大小。

unionSize函数通过遍历集合元素并执行按位或操作来计算集合并集的大小。

inclusionExclusion函数使用位运算和循环来实现容斥原理的应用。它从空集开始,遍历所有子集,并计算交集的大小。根据子集中元素的数量的奇偶性,确定交集的贡献正负号,并累加到最终结果中。

在main函数中,我们定义了一个包含三个集合的二维数组,并调用inclusionExclusion函数来应用容斥原理计算结果。

你可以运行上述代码,它将输出应用容斥原



http://www.ppmy.cn/news/104966.html

相关文章

SpringCloud(1)

文章目录 1.认识微服务1.0.学习目标1.1.单体架构1.2.分布式架构1.3.微服务1.4.SpringCloud1.5.总结 1.认识微服务 随着互联网行业的发展&#xff0c;对服务的要求也越来越高&#xff0c;服务架构也从单体架构逐渐演变为现在流行的微服务架构。这些架构之间有怎样的差别呢&…

《深入理解计算机系统(CSAPP)》第7章 链接 - 学习笔记

写在前面的话&#xff1a;此系列文章为笔者学习CSAPP时的个人笔记&#xff0c;分享出来与大家学习交流&#xff0c;目录大体与《深入理解计算机系统》书本一致。因是初次预习时写的笔记&#xff0c;在复习回看时发现部分内容存在一些小问题&#xff0c;因时间紧张来不及再次整理…

【技术解决方案】(多级)缓存架构最佳实践

凌晨三点半了&#xff0c;太困了&#xff0c;还差一些&#xff0c;明天补上… 因为自己最近做的项目涉及到了缓存&#xff0c;所以水一篇缓存相关的文章&#xff0c;供大家作为参考&#xff0c;若发现文章有纰漏&#xff0c;希望大家多指正。 缓存涉及到的范围颇广&#xff0c…

关于Dubbo的一些面试题

基础知识 为什么要用 Dubbo&#xff1f; 随着服务化的进一步发展&#xff0c;服务越来越多&#xff0c;服务之间的调用和依赖关系也越来越 复杂&#xff0c;诞生了面向服务的架构体系(SOA)&#xff0c;也因此衍生出了一系列相应的技术&#xff0c; 如对服务提供、服务调用、连接…

Ubuntu20.04安装VMware player16.2.4,不弹出安装界面的问题

1.先在官网上下载VMware player16.2.4进行下载&#xff0c;Ubuntu20.04对VMware player16.2.4进行安装 2.安装完成后&#xff0c;应该会有如图下的弹窗界面&#xff0c;但是我没有 解决方法&#xff1a; 点击Ubuntu的VMware player的程序图标&#xff0c;弹窗报错:"Comma…

2023北京老博会,第十届中国国际老年产业博览会8月举办

大会主题&#xff1a;关爱社会老年身心健康&#xff0c;推动老龄产业快速发展&#xff1b; ——北京&#xff0c;8月28日&#xff0c;第10届中国&#xff08;北京&#xff09;国际老年产业博览会将在北京亦创国际会展中心盛大启幕。本次展会由中国老年保健协会、日中介护学会、…

手撕code(2)

文章目录 1 设计模式1.1 单例模式1.1.1 懒汉单例1.1.2 饿汉单例1.1.3 总结 1.2 简单工厂模式 2 实现智能指针 1 设计模式 1.1 单例模式 某个类&#xff0c;不应该有多个实例&#xff0c;此时就可以使用单例模式。如果尝试创建多个实例&#xff0c;编译器就会报错。 1.1.1 懒…

《深入理解计算机系统(CSAPP)》第9章虚拟内存 - 学习笔记

写在前面的话&#xff1a;此系列文章为笔者学习CSAPP时的个人笔记&#xff0c;分享出来与大家学习交流&#xff0c;目录大体与《深入理解计算机系统》书本一致。因是初次预习时写的笔记&#xff0c;在复习回看时发现部分内容存在一些小问题&#xff0c;因时间紧张来不及再次整理…