Python学习笔记第五十八天
- Pandas 常用函数
- 读取数据
- 查看数据
- 数据清洗
- 数据选择和切片
- 数据排序
- 数据合并
- 数据选择和过滤
- 数据统计和描述
- 后记
Pandas 常用函数
以下列出了 Pandas 常用的一些函数及使用实例:
读取数据
函数 | 说明 |
---|---|
pd.read_csv(filename) | 读取 CSV 文件; |
pd.read_excel(filename) | 读取 Excel 文件; |
pd.read_sql(query, connection_object) | 从 SQL 数据库读取数据; |
pd.read_json(json_string) | 从 JSON 字符串中读取数据; |
pd.read_html(url) | 从 HTML 页面中读取数据。 |
接下来演示一下每个函数的用法
# 实例 1
import pandas as pd# 从 CSV 文件中读取数据
df = pd.read_csv('data.csv')# 从 Excel 文件中读取数据
df = pd.read_excel('data.xlsx')# 从 SQL 数据库中读取数据
import sqlite3
conn = sqlite3.connect('database.db')
df = pd.read_sql('SELECT * FROM table_name', conn)# 从 JSON 字符串中读取数据
json_string = '{"name": "John", "age": 30, "city": "New York"}'
df = pd.read_json(json_string)# 从 HTML 页面中读取数据
url = 'https://www.runoob.com'
dfs = pd.read_html(url)
df = dfs[0] # 选择第一个数据框
查看数据
函数 | 说明 |
---|---|
df.head(n) | 显示前 n 行数据; |
df.tail(n) | 显示后 n 行数据; |
df.info() | 显示数据的信息,包括列名、数据类型、缺失值等; |
df.describe() | 显示数据的基本统计信息,包括均值、方差、最大值、最小值等; |
df.shape | 显示数据的行数和列数。 |
接下来演示一下每个函数的用法
# 实例 2
# 显示前五行数据
df.head()# 显示后五行数据
df.tail()# 显示数据信息
df.info()# 显示基本统计信息
df.describe()# 显示数据的行数和列数
df.shape
# 实例 3
import pandas as pddata = [{"name": "Google", "likes": 25, "url": "https://www.google.com"},{"name": "Runoob", "likes": 30, "url": "https://www.runoob.com"},{"name": "Taobao", "likes": 35, "url": "https://www.taobao.com"}
]df = pd.DataFrame(data)
# 显示前两行数据
print(df.head(2))
# 显示前最后一行数据
print(df.tail(1))
数据清洗
函数 | 说明 |
---|---|
df.dropna() | 删除包含缺失值的行或列; |
df.fillna(value) | 将缺失值替换为指定的值; |
df.replace(old_value, new_value) | 将指定值替换为新值; |
df.duplicated() | 检查是否有重复的数据; |
df.drop_duplicates() | 删除重复的数据。 |
接下来演示一下每个函数的用法
# 实例 4
# 删除包含缺失值的行或列
df.dropna()# 将缺失值替换为指定的值
df.fillna(0)# 将指定值替换为新值
df.replace('old_value', 'new_value')# 检查是否有重复的数据
df.duplicated()# 删除重复的数据
df.drop_duplicates()
数据选择和切片
函数 | 说明 |
---|---|
df[column_name] | 选择指定的列; |
df.loc[row_index, column_name] | 通过标签选择数据; |
df.iloc[row_index, column_index] | 通过位置选择数据; |
df.ix[row_index, column_name] | 通过标签或位置选择数据; |
df.filter(items=[column_name1, column_name2]) | 选择指定的列; |
df.filter(regex=‘regex’) | 选择列名匹配正则表达式的列; |
df.sample(n) | 随机选择 n 行数据。 |
接下来演示一下每个函数的用法
# 实例 5
# 选择指定的列
df['column_name']# 通过标签选择数据
df.loc[row_index, column_name]# 通过位置选择数据
df.iloc[row_index, column_index]# 通过标签或位置选择数据
df.ix[row_index, column_name]# 选择指定的列
df.filter(items=['column_name1', 'column_name2'])# 选择列名匹配正则表达式的列
df.filter(regex='regex')# 随机选择 n 行数据
df.sample(n=5)
数据排序
函数 | 说明 |
---|---|
df.sort_values(column_name) | 按照指定列的值排序; |
df.sort_values([column_name1, column_name2], ascending=[True, False]) | 按照多个列的值排序; |
df.sort_index() | 按照索引排序。 |
接下来演示一下每个函数的用法
# 实例 6
# 按照指定列的值排序
df.sort_values('column_name')# 按照多个列的值排序
df.sort_values(['column_name1', 'column_name2'], ascending=[True, False])# 按照索引排序
df.sort_index()
数据分组和聚合
函数 说明
df.groupby(column_name) 按照指定列进行分组;
df.aggregate(function_name) 对分组后的数据进行聚合操作;
df.pivot_table(values, index, columns, aggfunc) 生成透视表。
# 实例 7
# 按照指定列进行分组
df.groupby('column_name')# 对分组后的数据进行聚合操作
df.aggregate('function_name')# 生成透视表
df.pivot_table(values='value', index='index_column', columns='column_name', aggfunc='function_name')
数据合并
函数 | 说明 |
---|---|
pd.concat([df1, df2]) | 将多个数据框按照行或列进行合并; |
pd.merge(df1, df2, on=column_name) | 按照指定列将两个数据框进行合并。 |
接下来演示一下每个函数的用法
# 实例 8
# 将多个数据框按照行或列进行合并
df = pd.concat([df1, df2])# 按照指定列将两个数据框进行合并
df = pd.merge(df1, df2, on='column_name')
数据选择和过滤
函数 | 说明 |
---|---|
df.loc[row_indexer, column_indexer] | 按标签选择行和列。 |
df.iloc[row_indexer, column_indexer] | 按位置选择行和列。 |
df[df[‘column_name’] > value] | 选择列中满足条件的行。 |
df.query(‘column_name > value’) | 使用字符串表达式选择列中满足条件的行。 |
数据统计和描述
函数 | 说明 |
---|---|
df.describe() | 计算基本统计信息,如均值、标准差、最小值、最大值等。 |
df.mean() | 计算每列的平均值。 |
df.median() | 计算每列的中位数。 |
df.mode() | 计算每列的众数。 |
df.count() | 计算每列非缺失值的数量。 |
假设我们有如下的 JSON 数据,数据保存到 data.json 文件:
data.json 文件
[{"name": "Alice","age": 25,"gender": "female","score": 80},{"name": "Bob","age": null,"gender": "male","score": 90},{"name": "Charlie","age": 30,"gender": "male","score": null},{"name": "David","age": 35,"gender": "male","score": 70}
]
我们可以使用 Pandas 读取 JSON 数据,并进行数据清洗和处理、数据选择和过滤、数据统计和描述等操作,具体如下:
# 实例 9
import pandas as pd# 读取 JSON 数据
df = pd.read_json('data.json')# 删除缺失值
df = df.dropna()# 用指定的值填充缺失值
df = df.fillna({'age': 0, 'score': 0})# 重命名列名
df = df.rename(columns={'name': '姓名', 'age': '年龄', 'gender': '性别', 'score': '成绩'})# 按成绩排序
df = df.sort_values(by='成绩', ascending=False)# 按性别分组并计算平均年龄和成绩
grouped = df.groupby('性别').agg({'年龄': 'mean', '成绩': 'mean'})# 选择成绩大于等于90的行,并只保留姓名和成绩两列
df = df.loc[df['成绩'] >= 90, ['姓名', '成绩']]# 计算每列的基本统计信息
stats = df.describe()# 计算每列的平均值
mean = df.mean()# 计算每列的中位数
median = df.median()# 计算每列的众数
mode = df.mode()# 计算每列非缺失值的数量
count = df.count()
后记
今天学习的是Python Pandas 常用函数学会了吗。 今天学习内容总结一下:
- Pandas 常用函数
- 读取数据
- 查看数据
- 数据清洗
- 数据选择和切片
- 数据排序
- 数据合并
- 数据选择和过滤
- 数据统计和描述