【深度学习】在 MNIST实现自动编码器实践教程

news/2024/11/8 18:35:07/

一、说明

        自动编码器是一种无监督学习的神经网络模型,主要用于降维或特征提取。常见的自动编码器包括基本的单层自动编码器、深度自动编码器、卷积自动编码器和变分自动编码器等。

        其中,基本的单层自动编码器由一个编码器和一个解码器组成,编码器将输入数据压缩成低维数据,解码器将低维数据还原成原始数据。深度自动编码器是在单层自动编码器的基础上增加了多个隐藏层,可以实现更复杂的特征提取。卷积自动编码器则是针对图像等数据特征提取的一种自动编码器,它使用卷积神经网络进行特征提取和重建。变分自动编码器则是一种生成式模型,可以用于生成新的数据样本。

        总的来说,不同类型的自动编码器适用于不同类型的数据和问题,选择合适的自动编码器可以提高模型的性能。

二、在Minist数据集实现自动编码器

2.1 概述

        本文中的代码用于在 MNIST 数据集上训练自动编码器。自动编码器是一种旨在重建其输入的神经网络。在此脚本中,自动编码器由两个较小的网络组成:编码器和解码器。编码器获取输入图像,将其压缩为 64 个特征,并将编码表示传递给解码器,然后解码器重建输入图像。自动编码器通过最小化重建图像和原始图像之间的均方误差来训练。该脚本首先加载 MNIST 数据集并规范化像素值。然后,它将图像重塑为一维表示,以便可以将其输入神经网络。之后,使用tensorflow.keras库中的输入层和密集层创建编码器和解码器模型。自动编码器模型是通过链接编码器和解码器模型创建的。然后使用亚当优化器和均方误差损失函数编译自动编码器。最后,自动编码器在归一化和重塑的MNIST图像上训练25个epoch。通过绘制训练集和测试集在 epoch 上的损失来监控训练进度。训练后,脚本绘制一些测试图像及其相应的重建。此外,还计算了原始图像和重建图像之间的均方误差和结构相似性指数(SSIM)。

        下图显示了模型的良好拟合,可以看到模型的良好拟合。

训练和测试数据的模型丢失

        该代码比较两个图像,一个来自测试集的原始图像和一个由自动编码器生成的预测图像。它使用该函数计算两个图像之间的均方误差 (MSE),并使用 scikit-image 库中的函数计算两个图像之间的结构相似性指数 (SSIM)。根据 mse 和 ssim 代码检索test_labels以打印测试图像的值。msessim

2.2 代码实现

import numpy as np
import tensorflow
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Input, Dense, Flatten
from tensorflow.keras.layers import Layer 
from skimage import metrics
## import os can be skipped if there is nocompatibility issue 
## with the OpenMP library and TensorFlow 
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"# Load the MNIST dataset
(x_train, train_labels), (x_test, test_labels) = mnist.load_data()# Normalize the data
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.# Flatten the images
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))# Randomize both the training and test
permutation = np.random.permutation(len(x_train))
x_train, train_labels = x_train[permutation], train_labels[permutation]
permutation = np.random.permutation(len(x_test))
x_test, test_labels = x_test[permutation], test_labels[permutation]
# Create the encoderlist_xtest = [ [x_test[i], test_labels[i]] for i in test_labels] 
print(len(list_xtest)) encoder_input = Input(shape=(784,))
encoded = Dense(64, activation='relu')(encoder_input)
encoder = Model(encoder_input, encoded)# Create the decoder
decoder_input = Input(shape=(64,))
decoded = Dense(784, activation='sigmoid')(decoder_input)
decoder = Model(decoder_input, decoded)# Create the autoencoder
autoencoder = Model(encoder_input, decoder(encoder(encoder_input)))lr_schedule = tensorflow.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate = 5e-01, decay_steps = 2500, decay_rate = 0.75,staircase=True) 
tensorflow.keras.optimizers.Adam(learning_rate = lr_schedule,beta_1=0.95,beta_2=0.99,epsilon=1e-01)
autoencoder.compile(optimizer='adam', loss='mean_squared_error')# Train the autoencoder
history = autoencoder.fit(x_train, x_train,epochs=25,batch_size=512,shuffle=True,validation_data=(x_test, x_test))# Plot the training history
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper right')
plt.show()# Plot the test figures vs. predicted figures
decoded_imgs = autoencoder.predict(x_test)def mse(imageA, imageB):err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2)err /= float(imageA.shape[0])return errdef ssim(imageA, imageB):return metrics.structural_similarity(imageA, imageB,channel_axis=None)decomser = [] 
decossimr = [] 
n = 10
list_xtestn = [ [x_test[i], test_labels[i]] for i in range(10)] 
print([list_xtestn[i][1] for i in range(n)]) 
plt.figure(figsize=(20, 4))
for i in range(n):# Display originalax = plt.subplot(2, n, i + 1)plt.imshow(x_test[i].reshape(28, 28))plt.gray()ax.get_xaxis().set_visible(False)ax.get_yaxis().set_visible(False)# Display reconstructionax = plt.subplot(2, n, i + 1 + n)plt.imshow(decoded_imgs[i].reshape(28, 28))plt.gray()ax.get_xaxis().set_visible(False)ax.get_yaxis().set_visible(False)if mse(list_xtestn[i][0],decoded_imgs[i]) <= 0.01: msel = mse(list_xtestn[i][0],decoded_imgs[i])decomser.append(list_xtestn[i][1])  if ssim(list_xtestn[i][0],decoded_imgs[i]) > 0.85:ssiml = ssim(list_xtestn[i][0],decoded_imgs[i])decossimr.append(list_xtestn[i][1])   print("mse and ssim for image %s are %s and %s" %(i,msel,ssiml)) 
plt.show() print(decomser)
print(decossimr)

三、实验的部分结果示例 

        该模型可以预测手写数据,如下所示。

原始数据和预测数据

        此外,使用MSE和ssim方法将预测图像与测试图像进行比较,可以访问test_labels并打印预测数据。

预测和测试图像的 MSE 和 SSM 值,以及 SSE 和 SSIM 方法test_labels返回的数字列表

        此代码演示如何使用自动编码器通过图像比较教程来训练和建立手写识别网络。一开始,训练和测试图像是随机的,因此每次运行的图像集都不同。

        在另一篇文章中,我们将展示如何使用 Padé 近似值作为自动编码器 (link.medium.com/cqiP5bd9ixb) 的激活函数。

引用:

  1. 原始的MNIST数据集:LeCun,Y.,Cortes,C.和Burges,C.J.(2010)。MNIST手写数字数据库。AT&T 实验室 [在线]。可用: http://yann。莱昆。com/exdb/mnist/
  2. 自动编码器概念和应用:Hinton,G.E.和Salakhutdinov,R.R.(2006)。使用神经网络降低数据的维数。科学, 313(5786), 504–507.
  3. 使用自动编码器进行图像重建:Masci,J.,Meier,U.,Cireşan,D.和Schmidhuber,J.(2011年52月)。用于分层特征提取的堆叠卷积自动编码器。在人工神经网络国际会议(第 59-<> 页)中。施普林格,柏林,海德堡。
  4. The tensorflow.keras library: Chollet, F. (2018).使用 Python 进行深度学习。纽约州谢尔特岛:曼宁出版公司
  5. 均方误差损失函数和亚当优化器:Kingma,D.P.和Ba,J.(2014)。Adam:一种随机优化的方法。arXiv预印本arXiv:1412.6980。
  6. 结构相似性指数(SSIM):Wang,Z.,Bovik,A.C.,Sheikh,H.R.和Simoncelli,E.P.(2004)。图像质量评估:从错误可见性到结构相似性。IEEE图像处理事务,13(4),600-612。
  7. 弗朗西斯·贝尼斯坦特

    ·

http://www.ppmy.cn/news/1007877.html

相关文章

Docker学习(二十四)报错速查手册

目录 一、This error may indicate that the docker daemon is not running 报错docker login 报错截图&#xff1a;原因分析&#xff1a;解决方案&#xff1a; 二、Get "https://harbor.xxx.cn/v2/": EOF 报错docker login 报错截图&#xff1a;原因分析&#xff1a…

基于 yolov8 的人体姿态评估

写在前面 工作中遇到&#xff0c;简单整理博文内容为使用预训练模型的一个预测 Demo测试图片来源与网络,如有侵权请告知理解不足小伙伴帮忙指正 对每个人而言&#xff0c;真正的职责只有一个&#xff1a;找到自我。然后在心中坚守其一生&#xff0c;全心全意&#xff0c;永不停…

NLP实践——使用Llama-2进行中文对话

NLP实践——使用Llama-2进行中文对话 1. 前言2. 利用prompt3. 利用Logit Processor3.1 修改13.2 修改23.3 修改33.4 修改4 1. 前言 在之前的博客 NLP实践——Llama-2 多轮对话prompt构建中&#xff0c;介绍了如何构建多轮对话的prompt&#xff0c;本文将介绍如何使用Llama-2进…

8.5day06 框架基础--反射+注解

文章目录 反射获取类的各种信息获取类的字节码文件 注解元注解 复习redis两道算法题 摆烂了&#xff0c;不想学啦&#xff01;&#xff01;&#xff01; 反射 反射主要用来做框架; 学习内容 获取类的各种信息 第一步 加载类&#xff0c;获取类的字节码文件 第二步 获取类的…

uni-app:实现列表单选功能

效果图&#xff1a; 核心解析&#xff1a; 一、 <view class"item_all" v-for"(item, index) in info" :key"index"><view classposition parameter-info text-over :classitem.checked?"checked_parameter":""…

在线课堂,视频点播,springboo+vue

springbootvue三端&#xff08;管理后台&#xff0c;教师端&#xff0c;用户端&#xff09;端可提供源码&#xff0c;可远程安装&#xff0c;需要的加微信&#xff1a; 体验地址&#xff1a;http://edu.dgrxs.com/ 用户端&#xff1a; 管理端&#xff1a; 教师端&#xff1a;

23款奔驰GLE450加装迈巴赫GLS600同款电动踏板,家人上下车更方便

新款奔驰GLE级车型原厂都没有电动踏板&#xff0c;都是固定踏板&#xff0c;或者没有踏板。这次安装的迈巴赫款式电动踏板是副厂的&#xff0c;虽然是副厂&#xff0c;但是脚下面积大&#xff0c;外观整洁大气&#xff0c;非常适合GLE。

SpringCloud深度学习(在更)

微服务简介 微服务是什么&#xff1f; 微服务是一种架构风格&#xff0c;将一个大型应用程序拆分为一组小型、自治的服务。每个服务都运行在自己独立的进程中&#xff0c;使用轻量级的通信机制&#xff08;通常是HTTP或消息队列&#xff09;进行相互之间的通信。这种方式使得…