kafka 理论知识

news/2025/1/16 2:32:08/

1 首先要了解kafka是什么

Kafka是一个分布式的消息订阅系统

1.1  kafka存储消息的过程

消息被持久化到一个topic中,topic是按照“主题名-分区”存储的,一个topic可以分为多个partition,在parition(分区)内的每条消息都有一个有序的id号,这个id号被称为偏移(offset),记录消息的消息位置**

1.2  partition 不能不了解的知识

Partition是Kafka中数据分布的基本单位,里面的数据是储存在硬盘中的,追加式的,通过将数据分散到多个Partition上,多个partition可以并行处理数据,所以可以处理相当量的数据,可以实现数据的并行处理和负载均衡。同一个 Consumer Group 中,只有一个 Consumer 实例可消费某个 Partition 的消息; 每个Topic可以根据预期的数据量和处理需求设置适当数量的Partition

虽然分区机制可以提高系统的整体吞吐量,但它并不是为了实现负载均衡而设计的。相反,Kafka 更关注的是数据的持久性、可用性和容错能力

请注意,Partition的数量一旦确定后,一般情况下是不能直接更改的。因为更改Partition数量可能会影响数据的分布和处理,所以在设计Topic时需要仔细考虑预期的数据量、吞吐量以及系统的伸缩性需求。

1.3 partition和replica之间的暧昧关系

具体来说,Kafka 通过将主题(topic)分为多个分区(partition),并将每个分区复制到多个节点上来实现高可用性和扩展性。每个分区都有一个主节点(leader)和多个副本节点(replica)。主节点负责处理来自生产者的消息和消费者的读取请求,而副本节点则用于备份数据并提供冗余。如果主节点失效,Kafka 会自动选举一个副本节点作为新的主节点,以保持服务的连续性。**

这种设计确保了高可用性和数据冗余,但并不是所有节点都直接参与消息的处理。

2 kafka的相关名词

1.producer:
  消息生产者,发布消息到 kafka 集群的终端或服务。
2.broker:
  kafka 集群中包含的服务器。
3.topic:
  每条发布到 kafka 集群的消息属于的类别,即 kafka 是面向 topic 的。
4.partition:
  partition 是物理上的概念,每个 topic 包含一个或多个 partition。kafka 分配的单位是 partition。
5.consumer:
  从 kafka 集群中消费消息的终端或服务。
6.Consumer group:
  high-level consumer API 中,每个 consumer 都属于一个 consumer group,每条消息只能被 consumer group 中的一个 Consumer 消费,但可以被多个 consumer group 消费。
7.replica:
  partition 的副本,保障 partition 的高可用。
8.leader:
  replica 中的一个角色, producer 和 consumer 只跟 leader 交互。
9.follower:
  replica 中的一个角色,从 leader 中复制数据。
10.controller:
  kafka 集群中的其中一个服务器,用来进行 leader election 以及 各种 failover。
12.zookeeper:
  kafka 通过 zookeeper 来存储集群的 meta 信息

2.1 kafka的工作流程 

3 不能不知道的主角zk

在 Kafka 中,ZooKeeper(简称为ZK)并不用来直接存储消息数据,而是用于协调和管理 Kafka 集群的元数据和状态信息。ZooKeeper 在 Kafka 中扮演以下几个角色:

1. 保存 Kafka 集群的元数据:ZooKeeper 存储了关于 Kafka 集群的元数据,包括主题(topics)、分区(partitions)、副本(replicas)等信息。这些元数据描述了 Kafka 集群的整体结构和配置。
2. 管理消费者组的偏移量(offset):ZooKeeper 用于存储和管理消费者组的偏移量信息。消费者组在消费消息时,会将当前消费的偏移量保存在 ZooKeeper 中,以便后续继续消费。

3. 选举 Kafka 控制器(Controller):Kafka 集群中的一个节点会被选举为控制器,负责管理分区的分配和副本的重新分配。ZooKeeper 用于协调和选举控制器节点。
4. 监测集群成员状态:ZooKeeper 监测和报告 Kafka 集群中各个节点的状态,例如节点的上线和下线。

3.1 生产者往zk注册消息

消息发送者会在Zookeeper中注册相关信息,在Zookeeper中获取Broker以及Topic的信息,然后将消息数据写入到指定的Kafka Topic中。

3.2 消费者往zk注册

Kafka依托于Zookeeper来注册Broker的信息,消费者会在Zookeeper注册消费者信息,同时也是通过Zookeeper来发现Kafka中的Broker列表。

发送者和消费者都会在Zookeeper中注册信息,通过Zookeeper来获取要存储或者消费的Kafka Broker列表。

Kafka的消息数据都是存储在Topic中的,Kafka会将Topic的元数据(信息)存储在Zookeeper中,维护Topic和Broker的关系,只存储元数据不存储消息数据

3.3 你知道的元数据

(topic信息;topic有哪些分区,哪些副本,分别在哪台broker上,哪个是leader;consumer信息及读取消息后提交的偏移量数据等),元数据存储在zk中

3.4 被需要的zk

Kafka使用Zookeeper的原因:Kafka中会有若干个Broker,Broker需要通过分布式协调服务来维护,统一管理Broker的配置信息,客户端和消费者直接从配置中心获取Broker的信息,为Broker与Broker之间的请求建立安全协议,而这种分布式协调服务中Zookeeper是最可靠的

每个broker只存储消息体,不存储元数据

4、非常关键(副本)

高可用,数据持久化,数据备份

4.1 kafka副本的选举策略

其中:kafka分区中所有的副本统称未AR;副本leader的选举策略为:在isr中存活为前提,按照AR中排在前面的优先,例如AR[1,0,2] ,isr [1,0,2],那么leader就会按照1,0,2的顺序进行轮询

4.2 分区和副本数据一致性

  1. 分区领导者选举:每个分区都有一个 leader 和多个副本(replica)。在一个分区中,只有 leader 能够处理读写请求,而副本只负责复制数据以实现高可用性。当某个分区的 leader 发生故障或宕机时,Kafka 需要在副本中选择一个新的 leader。这个选举过程由 ZooKeeper 协助完成。ZooKeeper 负责跟踪每个分区的 leader 和副本状态,并在 leader 不可用时发起新的选举。

  2. ISR(In-Sync Replicas)机制:Kafka 引入了 ISR 机制来确保 leader 和 leader 副本之间的数据一致性。ISR 是指与 leader 处于同步状态的副本集合。在正常情况下,leader 和 ISR 中的副本具有相同的数据。当生产者发送消息时,只有写入 leader 并复制到 ISR 中的副本才被视为成功。这确保了所有可用的副本在给定时间点都具有相同的数据。

  3. 消息确认机制:生产者发送消息后,可以选择等待确认或异步发送。如果设置为等待确认,生产者将在消息成功写入 leader 和 ISR 中的所有副本之后,收到来自 Kafka 的确认。这种方式保证了消息的可靠性。

  4. 数据同步:Kafka 使用副本同步机制来保持 leader 和 follower 副本之间的数据一致性。当消息被写入 leader 时,leader 将消息发送给其 ISR 中的所有副本。副本收到消息后会回复确认,leader 在收到 ISR 中的大多数副本确认后才认为消息成功提交,然后将确认发送给生产者。这确保了所有 ISR 中的副本在给定时间点具有相同的数据。

5、producer发布消息

producer 采用 push 模式将消息发布到 broker,每条消息都被 append 到 patition 中,属于顺序写磁盘(顺序写磁盘效率比随机写内存要高,保障 kafka 吞吐率)。

5.1 是如何发布消息到分区的

producer 发送消息到 broker 时,会根据分区算法选择将其存储到哪一个 partition。

其路由机制为:

1. 指定了 patition,则直接使用;

2. 未指定 patition 但指定 key,通过对 key 的 value 进行hash 选出一个 patition

3. patition 和 key 都未指定,使用轮询选出一个 patition

5.2 流程说明:

 

1. producer 先从 zookeeper 的 "/brokers/.../state" 节点找到该 partition 的 leader

2. producer 将消息发送给该 leader

3. leader 将消息写入本地 log

4. followers 从 leader pull 消息,写入本地 log 后 leader 发送 ACK

5. leader 收到所有 ISR 中的 replica 的 ACK 后,增加 HW(high watermark,最后 commit 的 offset) 并向 producer 发送 ACK

5.3 发送消息topic分类

Producer即生产者,向Kafka集群发送消息,在发送消息之前,会对消息进行分类,即Topic,两个producer发送了分类为topic1的消息,另外一个发送了topic2的消息。 Topic即主题,通过对消息指定主题可以将消息分类,消费者可以只关注自己需要的Topic中的消息 Consumer即消费者,消费者通过与kafka集群建立长连接的方式,不断地从集群中拉取消息,然后可以对这些消息进行处理。 从上图中就可以看出同一个Topic下的消费者和生产者的数量并不是对应的

6 消费者消费消息

在消费者消费消息时,kafka使用offset来记录当前消费的位置 在kafka的设计中,可以有多个不同的group来同时消费同一个topic下的消息,有两个不同的group同时消费,他们的的消费的记录位置offset各不相同,不互相干扰。 对于一个group而言,消费者的数量不应该多余分区的数量,因为在一个group中,每个分区至多只能绑定到一个消费者上,即一个消费者可以消费多个分区,一个分区只能给一个消费者消费 因此,若一个group中的消费者数量大于分区数量的话,多余的消费者将不会收到任何消息。

7、broker存储消息周期分类

Kafka中的消息保留策略是通过配置参数进行配置的。一种常见的配置是使用时间保留策略,即设置一个保留时间,超过该时间的消息将被删除。另一种常见的策略是基于消息的大小来设置保留策略,即设置一个最大的消息保留容量,一旦超过这个容量,旧的消息将被删除。

因此,即使消息被消费完,它们可能在Kafka集群中保留一段时间,直到达到保留策略所定义的条件。这样可以确保消息在需要时可以重新消费或重新读取。但请注意,一旦消息达到保留策略的条件,它们将被永久删除,无法再次访问。

无论消息是否被消费,kafka 都会保留所有消息。有两种策略可以删除旧数据:

  1. 基于时间:log.retention.hours=168

  2. 基于大小:log.retention.bytes=1073741824 需要注意的是,因为Kafka读取特定消息的时间复杂度为O(1),即与文件大小无关,所以这里删除过期文件与提高 Kafka 性能无关


http://www.ppmy.cn/news/1001799.html

相关文章

解决一个Sqoop抽数慢的问题,yarn的ATSv2嵌入式HBASE崩溃引起

新搭建的一个Hadoop环境,用Sqoop批量抽数的时候发现特别慢,我们正常情况下是一个表一分钟左右,批量抽十几个表,也就是10分钟的样子,结果发现用了2个小时: 查看yarn日志 发现有如下情况: 主要有两…

虹科方案 | 虹科AR助力汽车产业降本增效,实现数字化转型!

虹科AR远程解决方案 将高性能的Vuzix AR眼镜与工业远程软件相结合,一线员工使用AR眼镜呼叫专家,由远程专家进行诊断并给出建议,支持一线员工与远程专家实时语音视频交互、AR标注指引、发送文件图片并进行会议录制,帮助一线员工解…

Locust-生产压测实战

刚好最近使用 locust 进行生产持续 15 天压测,我们压测的 QPS 平均在 4.2w 左右 设置时间间隔为0-0,才可以最大提升并发的QPS 使用FastHttpUser预计比HttpUser的QPS 提升 5倍左右 使用go语言的压测引擎,预计性能可以再提升2倍【在python使用…

如何克服学习和工作中的焦虑和迷茫

如何克服学习和工作中的焦虑和迷茫 😇博主简介:我是一名正在攻读研究生学位的人工智能专业学生,我可以为计算机、人工智能相关本科生和研究生提供排忧解惑的服务。如果您有任何问题或困惑,欢迎随时来交流哦!&#x1f6…

编译原理陈火旺第三版第九章课后题答案

下面的答案仅供参考! 1. 有哪些存储分配策略?并叙述何时用何种存储分配策略? 答:存储分配策略分为静态分配策略和动态分配策略两大类,而动态分配策略又可分为栈式动态分配策略和堆式动态分配策略两类。 在一个的具体的编译…

2023年自动化测试已成为标配?一篇彻底打通自动化测试...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 首先我们从招聘岗…

【测试联调】如何在前后端测试联调时优雅的构造异常场景

目录 背景 使用iptables实现 利用iptables丢弃某ip数据包 使用 -L 列出所有规则 IP 连通性 通信 测试 插入一条规则,丢弃此ip 的所有协议请求 列出所有规则 测试 丢弃规则内的IP 连通性 清除 规则列表的 限制 模拟ip进行丢包50%的处理。 mysql proxy 代理…

不能乱点链接之获取cookie

这里是浏览器存储的某个网址的cookie 然后点击了链接就把参数获取到 因为document.cookie 会直接获取到浏览器cookie 所以为了拦截 存cookie的时候要设置: 设置httpOnly 只要http协议能够读取和携带 再document.cookie 就为空了 原文链接: 尚硅谷课程…