Python做统计图之美

embedded/2024/12/22 23:15:52/

Python数据分析可视化

案例效果图

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib# 数据
data = {"房型": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],"住宅类型": ["普通宅", "普通宅", "普通宅", "非普通宅", "非普通宅", "非普通宅", "非普通宅", "非普通宅", "其他", "其他", "非普通宅"],"容积率": ["列入", "列入", "列入", "列入", "列入", "列入", "列入", "列入", "不列入", "不列入", "不列入"],"开发成本": [4263, 4323, 4532, 5288, 5268, 5533, 5685, 4323, 2663, 2791, 2982],"房型面积": [77, 98, 117, 145, 156, 167, 178, 126, 103, 129, 133],"建房套数": [250, 250, 150, 250, 250, 250, 250, 75, 150, 150, 75],"开发成本 (元/)": [4263, 4323, 4532, 5288, 5268, 5533, 5685, 4323, 2663, 2791, 2982],"售价 (元/)": [12000, 10800, 11200, 12800, 12800, 13600, 14000, 10400, 6400, 6800, 7200]
}# 创建 DataFrame
df = pd.DataFrame(data)# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei']  # 中文显示
plt.rcParams['axes.unicode_minus'] = False  # 负号显示# 创建柱状图
plt.figure(figsize=(12, 7))# 华尔街日报风格的颜色
colors = ['#003f5c', '#2f4b7c', '#665191', '#a05195', '#d45087','#f95d6a', '#ff7c43', '#ffa600', '#ffd700', '#f0e0d0', '#c2c2c2']# 绘制柱状图
bars = plt.bar(df["房型"].astype(str), df["建房套数"], color=colors, edgecolor='black')# 添加数据标签
for bar in bars:yval = bar.get_height()plt.text(bar.get_x() + bar.get_width()/2, yval + 10, f'{yval}', ha='center', va='bottom', fontsize=10, fontweight='bold', color='black')# 设置x轴刻度标签
plt.xticks(df["房型"].astype(str), [f'房型{i}' for i in df["房型"]], fontsize=12)# 设置轴标签和标题
plt.ylabel('建房套数', fontsize=12)
plt.title('不同房型的建房套数', fontsize=14, fontweight='bold')# 添加网格线
plt.grid(axis='y', linestyle='--', alpha=0.7)# 自动调整图表边距以确保内容显示完整
plt.tight_layout()# 显示图形
plt.show()

图形效果:
在这里插入图片描述

这个图的配色比较好看。

python">import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rcParams# 数据
data = {"房型": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],"住宅类型": ["普通宅", "普通宅", "普通宅", "非普通宅", "非普通宅", "非普通宅", "非普通宅", "非普通宅", "其他", "其他", "非普通宅"],"容积率": ["列入", "列入", "列入", "列入", "列入", "列入", "列入", "列入", "不列入", "不列入", "不列入"],"开发成本": [4263, 4323, 4532, 5288, 5268, 5533, 5685, 4323, 2663, 2791, 2982],"房型面积": [77, 98, 117, 145, 156, 167, 178, 126, 103, 129, 133],"建房套数": [250, 250, 150, 250, 250, 250, 250, 75, 150, 150, 75],"开发成本 (元/平方米)": [4263, 4323, 4532, 5288, 5268, 5533, 5685, 4323, 2663, 2791, 2982],"售价 (元/平方米)": [12000, 10800, 11200, 12800, 12800, 13600, 14000, 10400, 6400, 6800, 7200]
}# 创建 DataFrame
df = pd.DataFrame(data)# 设置字体
rcParams['font.sans-serif'] = ['SimHei']  # 例如,使用 SimHei 字体显示中文
rcParams['axes.unicode_minus'] = False    # 显示负号# 创建散点图
plt.figure(figsize=(14, 7))
scatter = plt.scatter(df["房型面积"], df["售价 (元/平方米)"], c=df["开发成本"], cmap='viridis', s=100, edgecolors='k')
plt.colorbar(scatter, label='开发成本 (元/平方米)')
plt.xlabel('房型面积 (平方米)')
plt.ylabel('售价 (元/平方米)')
plt.title('房型面积与售价以及成本的关系')
plt.grid(True)# 在每个数据点上标记房型,保持一定距离
for i in range(len(df)):plt.text(df["房型面积"][i] + 2, df["售价 (元/平方米)"][i] + 200, f'房型{i + 1}', fontsize=9, ha='left')plt.show()

散点图效果如下:
在这里插入图片描述

散点图可以同时反应3个关系。

python">import pandas as pd
import matplotlib.pyplot as plt# 数据
data = {"房型": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],"建房套数": [250, 250, 150, 250, 250, 250, 250, 75, 150, 150, 75]
}# 创建 DataFrame
df = pd.DataFrame(data)# 饼图绘制
plt.figure(figsize=(10, 8))# 高级感配色方案
colors = ['#6C5B7B', '#C06C84', '#F67280', '#F8B195', '#F9D5A8', '#F3B6A3', '#E1C6C1', '#D9B8C4', '#C9A7B4', '#B68583', '#A9A5A0']# 绘制饼图
plt.pie(df["建房套数"], labels=[f'房型{i}' for i in df["房型"]], colors=colors, autopct='%1.1f%%', startangle=140, wedgeprops={'edgecolor': 'black'})# 添加标题
plt.title('不同房型建造套数的占比')# 显示图形
plt.show()

一个简单的饼图:

在这里插入图片描述

看起来比较清爽。

python">import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm, colors# 设置支持中文的字体(使用默认的或者系统中可用的字体)
plt.rcParams['font.sans-serif'] = ['SimHei']  # SimHei 是黑体字的中文字体
plt.rcParams['axes.unicode_minus'] = False   # 解决负号 '-' 显示问题# 提供的数据
labels = ['房型 1', '房型 2', '房型 3', '房型 4', '房型 5', '房型 6', '房型 7', '房型 8', '房型 9', '房型 10', '房型 11']
heights = [0.0606, 0.0909, 0.0758, 0.0909, 0.1061, 0.1212, 0.1364, 0.0909, 0.0303, 0.0455, 0.0606]# 按高度排序数据(顺时针递增)
sorted_indices = np.argsort(heights)
sorted_labels = [labels[i] for i in sorted_indices]
sorted_heights = [heights[i] for i in sorted_indices]# 创建反转渐变色
cmap = cm.get_cmap('plasma_r')  # 使用反转的渐变色
norm = colors.Normalize(vmin=min(sorted_heights), vmax=max(sorted_heights))
colors_map = [cmap(norm(height)) for height in sorted_heights]# 设置图形和极坐标
plt.figure(figsize=(12, 12))
ax = plt.subplot(111, polar=True)# 设置高度和宽度
width = 2 * np.pi / len(sorted_heights)
angles = [i * width for i in range(len(sorted_heights))]# 绘制条形图
bars = ax.bar(x=angles, height=sorted_heights, width=width, bottom=0,linewidth=1, edgecolor="white", color=colors_map)# 标签设置
labelPadding = 0.02  # 调整标签与条形的距离
for bar, angle, height, label in zip(bars, angles, sorted_heights, sorted_labels):rotation = np.rad2deg(angle)alignment = "left"if angle >= np.pi / 2 and angle < 3 * np.pi / 2:alignment = "right"rotation = rotation + 180ax.text(x=angle, y=bar.get_height() + labelPadding,s=label, ha=alignment, va='center', rotation=rotation,rotation_mode="anchor")ax.set_thetagrids([], labels=[])
plt.show()

这是一个比较亮眼的图:
在这里插入图片描述

有点像旋转楼梯一样。

python">import matplotlib.pyplot as plt
import numpy as np# 提供的数据
labels = ['房型 1', '房型 2', '房型 3', '房型 4', '房型 5', '房型 6', '房型 7', '房型 8', '房型 9', '房型 10', '房型 11']
values = [0.0606, 0.0909, 0.0758, 0.0909, 0.1061, 0.1212, 0.1364, 0.0909, 0.0303, 0.0455, 0.0606]# 计算角度和条形宽度
angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()
angles += angles[:1]  # 完成圆圈values += values[:1]  # 完成圆圈# 创建图形和轴
fig, ax = plt.subplots(figsize=(10, 10), subplot_kw=dict(polar=True))# 绘制圆环
ax.fill(angles, values, color='lightblue', alpha=0.5)
ax.plot(angles, values, color='blue', linewidth=2)  # 边界# 添加标签
for i, (angle, value, label) in enumerate(zip(angles[:-1], values[:-1], labels)):x = (value + 0.05) * np.cos(angle)y = (value + 0.05) * np.sin(angle)ax.text(x, y, label, horizontalalignment='center', verticalalignment='center')# 设置标签和刻度
ax.set_yticklabels([])  # 移除y轴刻度标签
ax.set_xticks(angles[:-1])  # 设置x轴刻度
ax.set_xticklabels(labels, rotation=45, ha='right')  # 设置x轴标签# 显示图形
plt.show()

上面是一个雷达图:

在这里插入图片描述

用于成绩,各种表现,反应强项和若点。

python">import matplotlib.pyplot as plt
import numpy as np# 数据
labels = ['房型 1', '房型 2', '房型 3', '房型 4', '房型 5', '房型 6', '房型 7', '房型 8', '房型 9', '房型 10', '房型 11']
sizes = [0.0606, 0.0909, 0.0758, 0.0909, 0.1061, 0.1212, 0.1364, 0.0909, 0.0303, 0.0455, 0.0606]# 生成渐变色
cmap = plt.get_cmap('Blues')  # 可以选择其他渐变色图
colors = [cmap(i / len(sizes)) for i in range(len(sizes))]# 创建圆环图
fig, ax = plt.subplots()
wedges, texts, autotexts = ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, wedgeprops=dict(width=0.4), colors=colors)# 设置中文显示
for text in texts:text.set_fontsize(10)text.set_color('black')for autotext in autotexts:autotext.set_fontsize(8)autotext.set_color('black')# 保持圆形
ax.axis('equal')plt.title('房型分布圆环图')
plt.show()

上面是一个圆环图,通过圆环的面积,表示占比:
在这里插入图片描述

渐变色的颜色,看做清新顺畅。


http://www.ppmy.cn/embedded/97623.html

相关文章

使用 onBeforeRouteLeave 组合式函数提升应用的用户体验

title: 使用 onBeforeRouteLeave 组合式函数提升应用的用户体验 date: 2024/8/14 updated: 2024/8/14 author: cmdragon excerpt: 摘要&#xff1a;本文介绍了在Nuxtjs中使用onBeforeRouteLeave组合式函数来提升应用用户体验的方法。onBeforeRouteLeave允许在组件离开当前路…

c++——list类

1. list的介绍及使用 1.1 list的介绍 list 是一个双向循环链表。 1.2 list的使用 list中的接口比较多&#xff0c;此处类似&#xff0c;只需要掌握如何正确的使用&#xff0c;然后再去深入研究背后的原理&#xff0c;已达到可扩展的能力。以下为list中一些常见的重要接口 …

keepalived安装-centos7

一、yum安装 1、安装Keepalived&#xff1a; yum install -y keepalived 2、启动Keepalived服务&#xff1a; systemctl start keepalived 3、设置Keepalived服务开机自启 systemctl enable keepalived 4、检查Keepalived服务状态&#xff1a; systemctl status keepal…

C++练习备忘录

1. 保留两位小数输出格式 #include <iostream> #include <iomanip> using namespace std; int main() {double S 0;S (15 25) * 20 / 2;cout << fixed << setprecision(2) << S;return 0; }2. 设置输出宽度 #include <iostream> #inclu…

C++面向对象编程(上)

类与对象属于面向对象的程序设计思想(Object Oriented Programming)&#xff0c;简称OOP。 面向对象基础理论 面向对象是一种对现实世界理解和抽象的方法&#xff0c;是计算机编程技术发展到一定阶段后的产物&#xff0c;是一种软件开发的方法 面向对象四大特性 1.抽象 忽…

【网络】网络基础概念背景TCP/IP 五层模型跨网络传输详解

主页&#xff1a;醋溜马桶圈-CSDN博客 专栏&#xff1a;计算机网络原理_醋溜马桶圈的博客-CSDN博客 gitee&#xff1a;mnxcc (mnxcc) - Gitee.com 目录 1.计算机网络发展 1.1 独立模式 1.2 网络互联 1.3 局域网 LAN 1.4 广域网 WAN 2.协议 2.1 初识协议 2.2 协议分层 2…

Redis缓存——缓存更新策略和常见的缓存问题

一.什么是缓存&#xff1f; 前言&#xff1a;什么是缓存? 前言&#xff1a;为什么要使用缓存&#xff1f; 1.1. 缓存的作用 1.2. 缓存的成本 1.3.如何使用缓存 二.缓存模型和思路 三.缓存更新策略 3.1 业务场景&#xff1a; 3.2.数据库缓存不一致解决方案&#xff1a…

关于使用conda安装opencv-python失败的解决方法

当你想使用conda环境安装opencv-python时&#xff0c;会弹出&#xff1a; conda install opencv-python Collecting package metadata (current_repodata.json): done Solving environment: failed with initial frozen solve. Retrying with flexible solve. Collecting packa…