1. 环境配置
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia
git clone https://github.com/nnanhuang/S3Gaussian.git --recursive
cd S3Gaussian
conda create -n S3Gaussian python=3.9
conda activate S3Gaussianpip install -r requirements.txt
pip install -e submodules/depth-diff-gaussian-rasterization
pip install -e submodules/simple-knn
2. 数据准备
2.1. 数据下载
# Create the data directory or create a symbolic link to the data directory
mkdir -p [your path]/waymo/raw
mkdir -p [your path]/waymo/processed
2.2. 数据处理
python preprocess_main.py --data_root [your path]/waymo/raw --target_dir [your path]/waymo/processed --split training --process_keys images lidar calib pose dynamic_masks --workers 2 --scene_ids 114 700
3. 运行
3.1. 训练
python train.py -s "[your path]/waymo/processed/training/114" --expname "waymo" --model_path "[your path]/waymo/model"
3.2. 推理
参考文献
https://github.com/nnanhuang/S3Gaussian/tree/main?tab=readme-ov-file