降维算法主要分为线性降维和非线性降维两种。
线性降维方法中,主成分分析(PCA)是最基础的无监督降维算法,其目标是将原有的n个特征投影到k维空间(k<n),新的特征由原特征线性变换而来,并且这些特征两两正交,称为主成分。
非线性降维方法则包括基于核函数的非线性降维方法,如核主成分分析(KPCA)、核独立成分分析(KICA)和核判别分析(KDA);以及基于特征值的非线性降维方法,如ISOMAP、局部线性嵌入(LLE)、拉普拉斯特征映射(LE)、局部保持投影(LPP)等。其中,t-SNE算法是一种优化后的SNE算法,通过用t分布取代SNE中的高斯分布,使得降维后的数据同类之间更加紧凑,不同类之间距离加大。
这些降维算法在机器学习和数据挖掘等领域有广泛应用,用于数据预处理、特征提取和可视化等方面。具体使用哪种降维算法,需要根据数据的特性和问题的需求来选择。