对于子数组问题的动态规划

embedded/2024/11/26 3:42:44/

前言

先讲讲我对于这个问题的理解吧

当谈到解决子数组问题时,动态规划(DP)是一个强大的工具,它在处理各种算法挑战时发挥着重要作用。动态规划是一种思想,它通过将问题分解成更小的子问题并以一种递归的方式解决它们,然后利用这些解决方案来构建原始问题的解。在动态规划中,我们经常会遇到两种状态:一种是单独成一段,另一种是以 i 结尾的子数组。

通过枚举和动态规划,我们可以有效地解决子数组问题。枚举法需要考虑所有可能的子数组组合,然后比较它们以找到最优解。这种方法通常需要较多的时间和空间,因为它需要枚举所有可能性。而动态规划则更加智能化,它通过保存历史记录来避免不必要的重复计算。这样,下次遍历时,我们可以利用之前的计算结果,从而大大提高了效率。

动态规划的一个常见技巧是前缀和,它可以帮助我们快速求出数组中任意子数组的和。前缀和的核心思想是将原始数组中每个位置的值累加起来,形成一个新的数组,然后利用这个新数组来快速计算子数组的和。这种方法在处理求子数组和的问题时非常实用,因为它将复杂度降低到了单一状态的动态规划

另外,预处理也是动态规划中常用的技巧之一。通过将经常使用的数据存储起来,我们可以在需要时快速获取,从而减少计算时间。预处理的思想是在问题出现之前就对数据进行处理,以便在需要时能够迅速获取所需的信息。

综上所述,动态规划是一种强大的解决子数组问题的方法,通过合理利用枚举、动态规划、前缀和和预处理等技巧,我们可以高效地解决各种复杂的算法挑战,为问题提供简单明了的解决方案。

这是我记得笔记 

 

我准备了五道例题都是这些解决方案

1.求最大子数组的和

. - 力扣(LeetCode)

思路分析:这一题主要是使用动态规划,也可以使用前缀和,动态规划也是求子数组的普遍思路,有两种状态,1自己组成子数组 和 前面的组成子数组,所以状态转移方程也就是Max(nums[i],dp[i - 1] + nums[i])

 代码实现

  public int maxSubArray(int[] nums) {int n = nums.length;int[] dp = new int[n + 1];//以i位置为结尾的最大子数组和 (多状态 前面i - 1的子数组要  和 不要)// 初始化 (因为存在负数)dp[0] = -0x3f3f3f3f;//前面子数组都是以i - 1位置为结尾 或者 i位置自己构成一个数组for (int i = 1; i <= nums.length; i++) {dp[i] = Math.max(nums[i - 1], dp[i - 1] + nums[i - 1]);}int max = -0x3f3f3f3f;for (int i = 0; i < dp.length; i++) {max = Math.max(dp[i], max);}return max;}

2.求最大环形子数组

. - 力扣(LeetCode)

思路分析:

中间的是连续的所以求内部最小子数组和就好了, 或者中间成最大子数组和
//f[]表示以i位置为结尾的所有子数组中的最大值  //g[]表示以i位置为结尾的所有子数组中的最小值
//g[]就是为了处理边界。他通过计算中间部分的最小值来结算环的最大值

public int maxSubarraySumCircular(int[] nums) {int sum = 0;//用来处理最小值int n = nums.length;//1.状态表示int[] f = new int[n + 1],g = new int[n + 1];//2.状态转移方程    自己组成子数组  和  自己加上以 i-1位置结尾 的最大子数组//3.初始化 = 0 即可for (int i = 1; i <= n; i++) {f[i] = Math.max(f[i - 1] + nums[i - 1], nums[i - 1]);g[i] = Math.min(g[i - 1] + nums[i - 1], nums[i - 1]);sum += nums[i - 1];}int maxF = -0x3f3f3f3f;//统计结果int minG = 0x3f3f3f3f;//统计结果//可以和上面统一合并,一个循环就够了for (int i = 1; i <= n; i++) {maxF = Math.max(maxF,f[i]);minG = Math.min(minG,g[i]);}//为了防止全是负数返回0,所以sum - minG要和0做判断//因为  -8 - (-8) = 0;全是负数sum = -8 minG = -8 所以要返回maxFreturn Math.max(maxF,sum - minG == 0 ? maxF : sum - minG);}

3.和为k的子数组个数 

. - 力扣(LeetCode)

 思路分析:

//解法 动态规划  +  hash表   k == pre[i](i位置的前缀和) - pre[j - 1] //此时 [j,i]的子数组为k
 public int subarraySum(int[] nums, int k) {int count = 0;//统计出现了多少次int n = nums.length;HashMap < Integer, Integer > hash = new HashMap<>();//当词典使用,存储所有前缀和hash.put(0,1);//记录0出现了1次,防止前缀和单独构成答案//1.状态表示   以i位置为结尾的区间和int[] pre = new int[n + 1];//2.状态转移方程  pre[i] = pre[i - 1] + nums[i]//3.初始化  防止j - 1 越界 pre[0] = 0for (int i = 1; i <= n; i++) {pre[i] = pre[i - 1] + nums[i - 1];//下标映射,因为我的pre[0]是虚拟节点if (hash.containsKey(pre[i] - k)){count += hash.get(pre[i] - k);}hash.put(pre[i],hash.getOrDefault(pre[i],0) + 1);//键为前缀和的值 ,值为出现的次数}return count;}

 滚动数组优化形成前缀和

//因为上述我们只使用了,pre[i - 1] 和 pre[i] 这两种状态,所以可以使用滚动数组进行优化,设置两个变量即可//也就是我们熟知的前缀和public int subarraySum1(int[] nums, int k) {int count = 0;//统计出现了多少次int n = nums.length;HashMap < Integer, Integer > hash = new HashMap<>();//当词典使用,存储所有前缀和int pre = 0;hash.put(0,1);//记录0出现了1次,防止前缀和单独构成答案for (int i = 0; i < n; i++) {pre += nums[i];if (hash.containsKey(pre - k)){count += hash.get(pre - k);}hash.put(pre,hash.getOrDefault(pre,0) + 1);//键为前缀和的值 ,值为出现的次数}return count;}

4.乘积为k的最大子数组

 

. - 力扣(LeetCode)

思路分析:注释都有明确标注状态表示和转移方程

 public int maxProduct(int[] nums) {int n = nums.length;//1.定义状态表示int[] f = new int[n + 1];//以i位置为结尾  所有子数组中 乘积的最大值   遇到正数我要你int[] g = new int[n + 1];//以i位置为结尾  所有子数组中 乘积的最小值   遇到负数我要你//2.状态转移方程  遇到正数我要最大值(f[i - 1])    遇到负数我要最小值(g[i - 1])//3.初始化  防止i - 1越界但不可保存0,因为初始化的初衷就是保证后续的位置不受影响f[0] = g[0] = 1;//注意多次赋值是从右往左进行的int ret = -0x3f3f3f3f;for (int i = 1; i <= n; i++) {if (nums[i - 1] > 0){f[i] = Math.max(f[i - 1] * nums[i - 1],nums[i - 1]);g[i] = Math.min(g[i - 1] * nums[i - 1],nums[i - 1]);}else {f[i] = Math.max(g[i - 1] * nums[i - 1],nums[i - 1]);g[i] = Math.min(f[i - 1] * nums[i - 1],nums[i - 1]);}ret = Math.max(ret,f[i]);}return ret;}

5.乘积为正数的最长子数组长度

. - 力扣(LeetCode)

 public int getMaxLen(int[] nums) {int n = nums.length;int ret = 0;//统计//1.状态表示int[] f = new int[n + 1];//以i位置为结尾中的 所有子数组中的 乘积为正数的最大长度int[] g = new int[n + 1];//以i位置为结尾中的 所有子数组中的 乘积为负数的最大长度//2.状态转移方程  f[i]如果i位置为正数为 f[i - 1] + 1    负数 g[i - 1] + 1//              g[i]同理正数g[i - 1] + 1   负数 f[i - 1] + 1//3.初始化 默认长度为0不影响后续结果for (int i = 1; i <= n; i++) {if (nums[i - 1] > 0){f[i] = f[i - 1] + 1;//当最后一个元素为正数的时候,并且g[i - 1] = 0表示前面没有负数,所以不可能组成负数g[i] = g[i - 1] == 0 ? 0 : g[i - 1] + 1;}else if (nums[i - 1] < 0){//当最后一个元素为负数的时候,并且g[i - 1] = 0表示前面没有负数,所以不可能组成正数f[i] = g[i - 1] == 0 ? 0 : g[i - 1]  + 1;g[i] = f[i - 1] + 1;}else {//处理为0的情况f[i] = 0;g[i] = 0;}ret = Math.max(ret,f[i]);}return ret;}

总结

当解决子数组问题时,动态规划是一个强大而智能的工具。通过将问题分解成更小的子问题并以递归的方式解决它们,动态规划可以高效地找到原始问题的解。在动态规划中,我们常常会遇到两种状态:一种是单独成一段,另一种是以 i 结尾的子数组。

枚举和动态规划是解决子数组问题的两种主要方法。枚举法需要考虑所有可能的子数组组合,然后比较它们以找到最优解。而动态规划则通过保存历史记录来避免不必要的重复计算,从而提高效率。

动态规划中,常用的技巧包括前缀和和预处理。前缀和可以帮助我们快速求出数组中任意子数组的和,而预处理则可以在问题出现之前就对数据进行处理,以提高计算效率。

综上所述,动态规划是解决子数组问题的一种强大工具,通过合理利用枚举、动态规划、前缀和和预处理等技巧,我们可以高效地解决各种复杂的算法挑战,为问题提供简单明了的解决方案。


http://www.ppmy.cn/embedded/34093.html

相关文章

图中有几个三角形

让我们先把三角形进行分类&#xff1a;1块组成的三角形、2块组成的三角形、依此类推。 1块组成的三角形有4个&#xff1a; 2块组成的三角形有&#xff1a;12,13,14,23,24,34.其中&#xff0c;14&#xff0c;23构不成三角形. 3块组成的三角形有&#xff1a;123,124,134,234。但…

Docker目录迁移

我们在生产环境中安装Docker时&#xff0c;默认的安装目录是 /var/lib/docker&#xff0c;而通常情况下&#xff0c;规划给系统盘的目录一般为50G&#xff0c;该目录是比较小的&#xff0c;一旦容器过多或容器日志过多&#xff0c;就可能出现Docker无法运行的情况&#xff0c;所…

vue 路由

Vue.js 路由小结 概述 Vue.js 是一个流行的前端JavaScript框架&#xff0c;其中的路由功能允许我们构建单页面应用&#xff08;SPA&#xff09;&#xff0c;而无需服务器端渲染。Vue Router 是官方推荐的路由管理库&#xff0c;它为我们提供了声明式的路由配置和导航解决方案…

【MySQL】4.MySQL的InnoDB引擎深度解析:事务、索引、MVCC、锁机制与性能优化等

InnoDB&#xff0c;作为MySQL数据库系统中的默认存储引擎&#xff0c;以其卓越的事务处理能力和对ACID属性的全面支持&#xff0c;成为了众多开发者和数据库管理员的首选。然而&#xff0c;要充分利用InnoDB的强大功能&#xff0c;就需要深入理解其内部机制&#xff0c;包括事务…

Mybatis进阶2

Mybatis进阶1-CSDN博客 Mybatis入门-CSDN博客 Mybatis入门2-CSDN博客 我们接下来要学习Mybatis的高级查询 我们先在数据库中准备我们需要的数据表 teacher表 课程表&#xff1a;与教师表是一对多的关系&#xff0c;所以有一个外键字段 学生表 由于学生表和课程表是多对多的…

8086 汇编学习 Part 5

流程转移 背景 一般情况下指令是顺序地逐条执行的&#xff0c;而在实际中&#xff0c;常需要改变程序的执行流程。 转移指令 可以控制 CPU 执行内存中某处代码的指令。可以修改 IP &#xff0c;或同时修改 CS 和 IP 的指令。 分类 按转移行为分类 段内转移 &#xff1a; 只修改…

Dockerfile自定义镜像

镜像结构: 语法指令: 这里是这个案例dockerfile里边的指令: 指定基础镜像FROM ubuntu:16.04配置环境变量&#xff0c;JDK的安装目录ENV JAVA_DIR/usr/local拷贝jdk和java项目的包COPY ./jdk8.tar.gz $JAVA_DIR/COPY ./docker-demo.jar /tmp/app.jar安装JDKRUN cd $JAVA_DIR \&…

HTML/CSS1

1.前置说明 请点这里 2.img元素 格式&#xff1a; <img src"图片地址" alt"占位文字" width"图片宽度" height"图片高度">其中alt是当图片加载失败时显示的文字 而且不同内核的浏览器显示出来的占位文字的效果也是不尽相同的…