深度学习项目--基于ResNet和DenseNet混合架构网络论文的复现(pytorch实现)

embedded/2025/3/29 22:20:32/
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

前言

  • 如果说最经典的神经网络ResNet当之无愧,后面基于ResNet网络提出DenseNet网络,也获得了best paper,本文是对这两个网络进行结合的一次论文复现,并用其进行了实验;
  • ResNet讲解: https://blog.csdn.net/weixin_74085818/article/details/145786990?spm=1001.2014.3001.5501
  • DenseNet讲解:https://blog.csdn.net/weixin_74085818/article/details/146102290?spm=1001.2014.3001.5501
  • 欢迎收藏 + 关注,本人将会持续更新

文章目录

  • 1、ResNet网络与DenseNet网络模型探索
  • 2、神经网络搭建与训练
    • 1、导入数据
      • 1、导入库
      • 2、查看数据信息和导入数据
      • 3、展示数据
      • 4、数据导入
      • 5、数据划分
      • 6、动态加载数据
    • 2、构建融合网络
    • 3、模型训练
      • 1、构建训练集
      • 2、构建测试集
      • 3、设置超参数
    • 4、模型训练
    • 5、结果可视化
    • 6、模型评估

1、ResNet网络与DenseNet网络模型探索

常见的一些模型融合方法有:

  1. 特征级融合:可以在两个网络的某个中间层进行特征图的直接拼接(concatenation)或元素级相加(addition)。
  2. 决策级融合:另一种方法是在网络的输出端进行融合,即先分别使用ResNet和DenseNet对输入数据进行处理
  3. 混合架构设计:还可以设计一种新的网络架构,将ResNet和DenseNet的特点结合起来。例如,在一个网络
  4. 基于注意力机制的融合:可以采用注意力机制动态地融合来自ResNet和DenseNet的信息。

本文采用的是第三种,参考论文:论文


Resnet模型DenseNet模型特点:

  • ResNet:通过建立前面层与后面层之间的“短路连接”(shortcu),其特征则直接进行sum操作,因此channel数不变;
  • DenseNet:通过建立的是前面所有层与后面层的紧密连接(dense connection),其特征在channel维度上的直接concat来实现特征重用(feature reuse),因此channel数增加;

在《论文》中,作者发现:ResNet更侧重于特征的复用,而DenseNet则更侧重于特征的生成

故作者提出了DPN网络,如图所示:

在这里插入图片描述

这个图比较难看懂,换个更清晰的图看:

在这里插入图片描述

这个图就容易看懂多了,DPN网络核心的就是上图中,蓝框和红框的东西,在DPN中,训练模块Block中,将输出的信息进行分拆,然后又进行融合,分拆和融合的思想是,ResNet的特征复用,与DenseNet的创建新特征

  • 混合模型融合分为两步: 思想是resnet模型的特征复用,densenet模型的创建新特征(dense_channel)
    • ResNet思想,特征复用,这里同时结合densenet思路,在通道进行融合;
    • 创建新特征:分别结合残差连接的resnet网络模块,与没有使用残差连接的网络模块数据,进行通道融合;
    • 新特征通道数量 = out_channel + 2 * dense_channel。
    • 具体实现,看代码即可

参考ResNet网络,可以发现,这个基本模块是基于ResNet模型进行改进的。

在这里插入图片描述


在ResNet网络中,采用1*1,3*3,1*1的三层网络进行特征提取,该论文中也是采用这个结构,但是不同的是第二层3 * 3还加入了分组卷积的方式,以便更好的提取特征,具体看代码即可,代码注释详细

2、神经网络搭建与训练

1、导入数据

1、导入库

python">import torch  
import torch.nn as nn
import torchvision 
import numpy as np 
import os, PIL, pathlib 
from collections import OrderedDict
import re
from torch.hub import load_state_dict_from_url# 设置设备
device = "cuda" if torch.cuda.is_available() else "cpu"device 
'cuda'

2、查看数据信息和导入数据

python">data_dir = "./data/"data_dir = pathlib.Path(data_dir)# 类别数量
classnames = [str(path).split("\\")[0] for path in os.listdir(data_dir)]classnames
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']

3、展示数据

python">import matplotlib.pylab as plt  
from PIL import Image # 获取文件名称
data_path_name = "./data/Cockatoo/"  # 不患病的
data_path_list = [f for f in os.listdir(data_path_name) if f.endswith(('jpg', 'png'))]# 创建画板
fig, axes = plt.subplots(2, 8, figsize=(16, 6))for ax, img_file in zip(axes.flat, data_path_list):path_name = os.path.join(data_path_name, img_file)img = Image.open(path_name) # 打开# 显示ax.imshow(img)ax.axis('off')plt.show()


在这里插入图片描述

4、数据导入

python">from torchvision import transforms, datasets # 数据统一格式
img_height = 224
img_width = 224 data_tranforms = transforms.Compose([transforms.Resize([img_height, img_width]),transforms.ToTensor(),transforms.Normalize(   # 归一化mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225] )
])# 加载所有数据
total_data = datasets.ImageFolder(root="./data/", transform=data_tranforms)

5、数据划分

python"># 大小 8 : 2
train_size = int(len(total_data) * 0.8)
test_size = len(total_data) - train_size train_data, test_data = torch.utils.data.random_split(total_data, [train_size, test_size])

6、动态加载数据

python">batch_size = 32train_dl = torch.utils.data.DataLoader(train_data,batch_size=batch_size,shuffle=True
)test_dl = torch.utils.data.DataLoader(test_data,batch_size=batch_size,shuffle=False
)
python"># 查看数据维度
for data, labels in train_dl:print("data shape[N, C, H, W]: ", data.shape)print("labels: ", labels)break
data shape[N, C, H, W]:  torch.Size([32, 3, 224, 224])
labels:  tensor([2, 2, 3, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 3, 0, 1, 0, 1, 3, 3, 2, 0, 0, 3,3, 3, 3, 1, 3, 3, 1, 2])

2、构建融合网络

ResNet和DenseNet 神经网络是以,ResNet为基础,故在特征提取中,采用和ResNet网络一样的1 * 1、3 * 3、1 * 1卷积核.

ResNet和DenseNet结合网络图为:
在这里插入图片描述

python">import torch.nn.functional as F # DPN模块:Block,结合网络图即可
class Block(nn.Module):'''  in_channel: 输入通道数mid_channel: 中间通道数out_channel: ResNet输出的通道数dense_channel: DenseNet网络产生新的特征通道groups: 分组卷积参数is_shortcut: ResNet是否进行残差操作'''def __init__(self, in_channel, mid_channel, out_channel, dense_channel, stride, groups, is_shortcut=False):super().__init__()# 参数存储self.is_shortcut = is_shortcutself.out_channel = out_channelself.dense_channel = dense_channel# 构建卷积模块,三层(Conv2d、BN、ReLU)self.conv1 = nn.Sequential(# 卷积核 1 * 1nn.Conv2d(in_channel, mid_channel, kernel_size=1, bias=False),  # 偏置设置为Fasle,因为下一层是BN层,BN本身启用了biasnn.BatchNorm2d(mid_channel),nn.ReLU())self.conv2 = nn.Sequential(# 分组卷积(为了提取更多特征),且卷积核为3 * 3nn.Conv2d(mid_channel, mid_channel, kernel_size=3, stride=stride, groups=groups, padding=1, bias=False),nn.BatchNorm2d(mid_channel),nn.ReLU())self.conv3 = nn.Sequential(# 卷积核 1 * 1,维持维度nn.Conv2d(mid_channel, out_channel + dense_channel, kernel_size=1, bias=False),nn.BatchNorm2d(out_channel + dense_channel))# 是否启动ResNet的残差连接, 这个对应上面网络图中间那一模块if self.is_shortcut:self.shortcut = nn.Sequential(nn.Conv2d(in_channel, out_channel + dense_channel, kernel_size=3, stride=stride, padding=1,bias=False),nn.BatchNorm2d(out_channel + dense_channel))self.relu = nn.ReLU(inplace=True)def forward(self, x):a = xx = self.conv1(x)x = self.conv2(x)x = self.conv3(x)if self.is_shortcut:a = self.shortcut(a)# 核心: 混合模型融合'''  混合模型融合分为两步: 思想是resnet模型的特征复用,densenet模型的创建新特征(dense_channel)1、ResNet思想,特征复用,这里同时结合densenet思路,在用到通道进行融合2、创建新特征:分别结合残差连接的resnet网络模块,与没有使用残差连接的网络模块数据,进行通道融合新特征通道数量 = out_channel + 2 * dense_channel'''x = torch.cat([a[:, :self.out_channel, :, :]+x[:, :self.out_channel, :, :], a[:, self.out_channel:, :, :], x[:, self.out_channel:, :, :]], dim=1)return x class DPN(nn.Module):# cfg:参数字典def __init__(self, cfg):super().__init__()# 储存参数self.group = cfg['group'] # 有一层为分组卷积self.in_channel = cfg['in_channels']mid_channel = cfg['mid_channels']out_channel = cfg['out_channels']dense_channel = cfg['dense_channels']num = cfg['num']   # Blcok数量,元组# 数据处理模块,即网络self.conv1 = nn.Sequential(nn.Conv2d(3, self.in_channel, kernel_size=7, padding=3, bias=False, padding_mode='zeros'),  # 卷积核为7,和densenet一样nn.BatchNorm2d(self.in_channel),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=0)  # 降维)self.conv2 = self._make_layers(mid_channel[0], out_channel[0], dense_channel[0], num[0], stride=1)self.conv3 = self._make_layers(mid_channel[1], out_channel[1], dense_channel[1], num[1], stride=2)self.conv4 = self._make_layers(mid_channel[2], out_channel[2], dense_channel[2], num[2], stride=2)self.conv5 = self._make_layers(mid_channel[3], out_channel[3], dense_channel[3], num[3], stride=2)self.pool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(cfg['out_channels'][3] + (num[3] + 1) * cfg['dense_channels'][3], cfg['classes'])  # Linear层,展开# 构建网络层,从 网络 图像上看,Block的叠加数量不同def _make_layers(self, mid_channel, out_channel, dense_channel, num, stride):layers = []# 每一个部分,都先用shortcut的Block,可以满足浅层特征利用, 增强特征提取作用,提升性能layers.append(Block(self.in_channel, mid_channel, out_channel, dense_channel,stride=stride, groups=self.group, is_shortcut=True))# 新特征通道数量 = out_channel + 2 * dense_channelself.in_channel = out_channel + 2 * dense_channelfor i in range(1, num):layers.append(Block(self.in_channel, mid_channel, out_channel, dense_channel, stride=1, groups=self.group))# 每次叠加,通道数量多一倍 dense_channelself.in_channel += dense_channel return nn.Sequential(*layers)def forward(self, x):x = self.conv1(x)x = self.conv2(x)x = self.conv3(x)x = self.conv4(x)x = self.conv5(x)x = self.pool(x)x = torch.flatten(x, start_dim=1)x = self.fc(x)return x

设置参数与模型构建,在DPN论文中,提供了两种网络结果,DPN92,DPN98

python">def DPN92(n_class=4):cfg = {"group" : 32,"in_channels" : 64,"mid_channels" : (96, 192, 384, 768),"out_channels" : (256, 512, 1024, 2048),"dense_channels" : (16, 32, 24, 128),"num" : (3, 4, 20, 3),"classes" : (len(classnames))}return DPN(cfg)def DPN98(n_class=4):cfg = {"group" : 40,"in_channels" : 96,"mid_channels" : (160, 320, 640, 1280),"out_channels" : (256, 512, 1024, 2048),"dense_channels" : (16, 32, 32, 128),"num" : (3, 6, 20, 3),"classes" : (len(classnames))}return DPN(cfg)model = DPN92().to(device)
model
DPN((conv1): Sequential((0): Conv2d(3, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU()(3): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False))(conv2): Sequential((0): Block((conv1): Sequential((0): Conv2d(64, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(96, 272, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(272, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(shortcut): Sequential((0): Conv2d(64, 272, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(272, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(1): Block((conv1): Sequential((0): Conv2d(288, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(96, 272, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(272, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(2): Block((conv1): Sequential((0): Conv2d(304, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(96, 272, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(272, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True)))(conv3): Sequential((0): Block((conv1): Sequential((0): Conv2d(320, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(192, 544, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(shortcut): Sequential((0): Conv2d(320, 544, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(1): Block((conv1): Sequential((0): Conv2d(576, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(192, 544, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(2): Block((conv1): Sequential((0): Conv2d(608, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(192, 544, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(3): Block((conv1): Sequential((0): Conv2d(640, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(192, 544, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True)))(conv4): Sequential((0): Block((conv1): Sequential((0): Conv2d(672, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(shortcut): Sequential((0): Conv2d(672, 1048, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(1): Block((conv1): Sequential((0): Conv2d(1072, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(2): Block((conv1): Sequential((0): Conv2d(1096, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(3): Block((conv1): Sequential((0): Conv2d(1120, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(4): Block((conv1): Sequential((0): Conv2d(1144, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(5): Block((conv1): Sequential((0): Conv2d(1168, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(6): Block((conv1): Sequential((0): Conv2d(1192, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(7): Block((conv1): Sequential((0): Conv2d(1216, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(8): Block((conv1): Sequential((0): Conv2d(1240, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(9): Block((conv1): Sequential((0): Conv2d(1264, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(10): Block((conv1): Sequential((0): Conv2d(1288, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(11): Block((conv1): Sequential((0): Conv2d(1312, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(12): Block((conv1): Sequential((0): Conv2d(1336, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(13): Block((conv1): Sequential((0): Conv2d(1360, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(14): Block((conv1): Sequential((0): Conv2d(1384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(15): Block((conv1): Sequential((0): Conv2d(1408, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(16): Block((conv1): Sequential((0): Conv2d(1432, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(17): Block((conv1): Sequential((0): Conv2d(1456, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(18): Block((conv1): Sequential((0): Conv2d(1480, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(19): Block((conv1): Sequential((0): Conv2d(1504, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True)))(conv5): Sequential((0): Block((conv1): Sequential((0): Conv2d(1528, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(768, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(768, 2176, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(2176, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(shortcut): Sequential((0): Conv2d(1528, 2176, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(2176, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(1): Block((conv1): Sequential((0): Conv2d(2304, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(768, 2176, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(2176, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True))(2): Block((conv1): Sequential((0): Conv2d(2432, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv2): Sequential((0): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU())(conv3): Sequential((0): Conv2d(768, 2176, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(2176, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(relu): ReLU(inplace=True)))(pool): AdaptiveAvgPool2d(output_size=(1, 1))(fc): Linear(in_features=2560, out_features=4, bias=True)
)
python">model(torch.randn(32, 3, 224, 224).to(device)).shape
torch.Size([32, 4])

3、模型训练

1、构建训练集

python">def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)batch_size = len(dataloader)train_acc, train_loss = 0, 0 for X, y in dataloader:X, y = X.to(device), y.to(device)# 训练pred = model(X)loss = loss_fn(pred, y)# 梯度下降法optimizer.zero_grad()loss.backward()optimizer.step()# 记录train_loss += loss.item()train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_acc /= sizetrain_loss /= batch_sizereturn train_acc, train_loss

2、构建测试集

python">def test(dataloader, model, loss_fn):size = len(dataloader.dataset)batch_size = len(dataloader)test_acc, test_loss = 0, 0 with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_loss += loss.item()test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_acc /= sizetest_loss /= batch_sizereturn test_acc, test_loss

3、设置超参数

python">loss_fn = nn.CrossEntropyLoss()  # 损失函数     
learn_lr = 1e-4             # 超参数
optimizer = torch.optim.Adam(model.parameters(), lr=learn_lr)   # 优化器

4、模型训练

python">import copytrain_acc = []
train_loss = []
test_acc = []
test_loss = []epoches = 40best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标for i in range(epoches):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳模型到 best_model     if epoch_test_acc > best_acc:         best_acc   = epoch_test_acc         best_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率     lr = optimizer.state_dict()['param_groups'][0]['lr']# 输出template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')print(template.format(i + 1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))PATH = './best_model.pth'  # 保存的参数文件名 
torch.save(best_model.state_dict(), PATH)print("Done")
Epoch: 1, Train_acc:56.4%, Train_loss:1.281, Test_acc:27.4%, Test_loss:2.379
Epoch: 2, Train_acc:70.6%, Train_loss:0.863, Test_acc:37.2%, Test_loss:2.512
Epoch: 3, Train_acc:79.4%, Train_loss:0.633, Test_acc:59.3%, Test_loss:1.114
Epoch: 4, Train_acc:85.6%, Train_loss:0.446, Test_acc:77.9%, Test_loss:0.714
Epoch: 5, Train_acc:91.4%, Train_loss:0.320, Test_acc:85.8%, Test_loss:0.411
Epoch: 6, Train_acc:90.3%, Train_loss:0.232, Test_acc:92.0%, Test_loss:0.234
Epoch: 7, Train_acc:96.9%, Train_loss:0.111, Test_acc:91.2%, Test_loss:0.196
Epoch: 8, Train_acc:96.7%, Train_loss:0.102, Test_acc:91.2%, Test_loss:0.263
Epoch: 9, Train_acc:96.7%, Train_loss:0.120, Test_acc:88.5%, Test_loss:0.282
Epoch:10, Train_acc:96.0%, Train_loss:0.131, Test_acc:77.9%, Test_loss:1.098
Epoch:11, Train_acc:96.2%, Train_loss:0.198, Test_acc:92.0%, Test_loss:0.319
Epoch:12, Train_acc:94.0%, Train_loss:0.164, Test_acc:90.3%, Test_loss:0.449
Epoch:13, Train_acc:96.2%, Train_loss:0.175, Test_acc:86.7%, Test_loss:0.330
Epoch:14, Train_acc:96.7%, Train_loss:0.085, Test_acc:86.7%, Test_loss:0.495
Epoch:15, Train_acc:98.0%, Train_loss:0.052, Test_acc:84.1%, Test_loss:0.561
Epoch:16, Train_acc:99.1%, Train_loss:0.022, Test_acc:88.5%, Test_loss:0.335
Epoch:17, Train_acc:99.6%, Train_loss:0.021, Test_acc:89.4%, Test_loss:0.272
Epoch:18, Train_acc:99.8%, Train_loss:0.027, Test_acc:88.5%, Test_loss:0.299
Epoch:19, Train_acc:97.1%, Train_loss:0.176, Test_acc:83.2%, Test_loss:0.796
Epoch:20, Train_acc:88.1%, Train_loss:0.588, Test_acc:81.4%, Test_loss:0.775
Epoch:21, Train_acc:87.8%, Train_loss:0.322, Test_acc:54.0%, Test_loss:4.497
Epoch:22, Train_acc:92.9%, Train_loss:0.187, Test_acc:75.2%, Test_loss:1.528
Epoch:23, Train_acc:97.6%, Train_loss:0.081, Test_acc:85.0%, Test_loss:0.750
Epoch:24, Train_acc:97.6%, Train_loss:0.055, Test_acc:91.2%, Test_loss:0.283
Epoch:25, Train_acc:99.6%, Train_loss:0.020, Test_acc:94.7%, Test_loss:0.225
Epoch:26, Train_acc:100.0%, Train_loss:0.007, Test_acc:93.8%, Test_loss:0.267
Epoch:27, Train_acc:99.8%, Train_loss:0.012, Test_acc:90.3%, Test_loss:0.266
Epoch:28, Train_acc:100.0%, Train_loss:0.004, Test_acc:89.4%, Test_loss:0.385
Epoch:29, Train_acc:99.8%, Train_loss:0.047, Test_acc:92.0%, Test_loss:0.224
Epoch:30, Train_acc:98.5%, Train_loss:0.055, Test_acc:82.3%, Test_loss:1.111
Epoch:31, Train_acc:98.7%, Train_loss:0.073, Test_acc:84.1%, Test_loss:0.642
Epoch:32, Train_acc:94.2%, Train_loss:0.159, Test_acc:78.8%, Test_loss:0.788
Epoch:33, Train_acc:96.0%, Train_loss:0.097, Test_acc:89.4%, Test_loss:0.411
Epoch:34, Train_acc:97.8%, Train_loss:0.085, Test_acc:90.3%, Test_loss:0.345
Epoch:35, Train_acc:98.9%, Train_loss:0.039, Test_acc:90.3%, Test_loss:0.633
Epoch:36, Train_acc:99.3%, Train_loss:0.042, Test_acc:85.0%, Test_loss:0.472
Epoch:37, Train_acc:99.3%, Train_loss:0.041, Test_acc:84.1%, Test_loss:0.580
Epoch:38, Train_acc:97.8%, Train_loss:0.161, Test_acc:87.6%, Test_loss:0.526
Epoch:39, Train_acc:97.1%, Train_loss:0.092, Test_acc:88.5%, Test_loss:0.616
Epoch:40, Train_acc:97.3%, Train_loss:0.073, Test_acc:88.5%, Test_loss:0.484
Done

5、结果可视化

python">import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息epochs_range = range(epoches)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training= Loss')
plt.show()

在这里插入图片描述

探索:
  • 在Resnet模型跑的时候,是跑了80次,但是这个模型并不适合跑30次,在经过20、30、40、80次等实验,与批次大小为16、32、48、64后,发现40次左右是比较较好一点结果;
  • 从测试集来说,这个模型效果高于RenNet模型,从验证集来说,准确率也高于,但是在20轮有一次误差比较大,但是只有一次,属于随机误差。
  • ResNet实验

6、模型评估

python"># 将参数加载到model当中 
best_model.load_state_dict(torch.load(PATH, map_location=device)) 
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)print(epoch_test_acc, epoch_test_loss)
0.9469026548672567 0.22493984922766685

http://www.ppmy.cn/embedded/176857.html

相关文章

设计一个基于机器学习的光伏发电功率预测模型,以Python和Scikit - learn库为例

下面为你设计一个基于机器学习的光伏发电功率预测模型,以Python和Scikit - learn库为例。此模型借助历史气象数据和光伏发电功率数据来预测未来的光伏发电功率。 模型设计思路 数据收集:收集历史气象数据(像温度、光照强度、湿度等&#xf…

蓝桥杯第十届 数的分解

题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 把 2019 分解成 3 个各不相同的正整数之和,并且要求每个正整数都不包含数字 2 和 4,一共有多少种不同的分解方法? 注意交换 3 个…

【xiaozhi赎回之路-2:语音可以自己配置就是用GPT本地API】

固件作用 打通了网络和硬件的沟通 修改固件实现【改变连接到小智服务器的】 回答逻辑LLM自定义 自定义了Coze(比较高级,自定义程度比较高,包括知识库,虚拟脚色-恋人-雅思老师-娃娃玩具{可能需要使用显卡对开源模型进行微调-产…

Spring6:6 单元测试-JUnit

6、单元测试:JUnit 在之前的测试方法中,几乎都能看到以下的两行代码: ApplicationContext context new ClassPathXmlApplicationContext("xxx.xml"); Xxxx xxx context.getBean(Xxxx.class);这两行代码的作用是创建Spring容器&…

爬虫:Requests-HTML的详细使用

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 1. Requests-HTML概述1.1 为何选择Requests-HTML?1.2 什么是Requests-HTML?1.3 主要特性1.4 安装 `requests-html`2. 基本用法2.1 发送 HTTP 请求2.2 解析 HTML2.2.1 使用 CSS 选择器2.2.2 使用 XPath2.2.3 使用 `sea…

23种设计模式中的责任链模式

允许多个对象都有机会处理请求,从而避免请求的发送者和接受者之间的耦合关系。将这些对象连成一条链,并沿着这条链传递请求,直到有一个处理器处理该请求为止。 责任链模式是一种处理请求的模式。它让多个处理器都有机会处理请求,直…

Linux之基本命令和格式

先给大家介绍几个学习过程中会运用到的软件 VMMare:虚拟机软件作用是用来安装其他具体操作系统的平台 Redhat:Linux操作系统,用来操作软件和命令的系统平台,可以建多个 Xshell,Xftp:辅助工具&#xff0c…

JVM 内存参数调优详解

1. ​堆内存控制 -Xms4g # 初始堆内存大小(JVM 启动时分配的堆内存) -Xmx4g # 最大堆内存大小(JVM 堆内存的上限) ​详细说明 ​作用: -Xms(Initial Heap Size&#…